上関原子力発電所1号炉 原子力規制委員会設置法 附則第23条第4項に基づく提出書

原子 炉設置許可申請書 本文第九号及び添付書類九記載事項 比較表

平成26年3月 中国電力株式会社

別紙1

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
設置許可申請書		九 発電用原子炉施設における放射線の管理に関する事項	
添付書類九		イ 核燃料物質及び核燃料物質によって汚染された物による放射線被ばく	
		の管理の方法	
	1. 放射線防護に関する基本方針	(1) 放射線防護に関する基本方針・具体的方法	
	1.1 基本的考え方		
	放射線の被ばく管理及び放射性廃棄物の廃棄に当たっては, 「核原料	放射線の被ばく管理及び放射性廃棄物の廃棄に当たっては, 「核原料	
	<u>物質、核燃料物質及び原子炉の規制に関する法律」(以下「原子炉等規</u>	物質、核燃料物質及び原子炉の規制に関する法律」及び「労働安全衛	
	<u>制法」という。)</u> 及び「労働安全衛生法」を遵守し、本発電所に起因す	生法」を遵守し、本発電所に起因する放射線被ばくから周辺監視区域	
	る放射線被ばくから周辺監視区域外の公衆並びに放射線業務従事者及	外の公衆並びに放射線業務従事者及び一時立入者(以下「放射線業務	
	び一時立入者(以下「放射線業務従事者等」という。)を防護するため	従事者等」という。)を防護するため十分な放射線防護対策を講じる。	
	十分な放射線防護対策を講じる。		
	さらに,発電所周辺の一般公衆に対する線量については,「発電用軽	さらに,発電所周辺の一般公衆に対する線量については, <u>「発電用軽</u>	
	<u>水型原子炉施設周辺の線量目標値に関する指針」</u> に基づき,合理的に達成	水型原子炉施設周辺の線量目標値に関する指針」(以下「線量目標値に	
	できる限り低くすることとする。	<u>関する指針」という。)</u> に基づき、合理的に達成できる限り低くするこ	
		ととする。	
	なお、放射線の被ばく管理及び放射性廃棄物管理の運用については、今		
	後、原子炉施設の最終的な詳細設計に合わせて更に十分検討の上、「原子		
	炉等規制法」に基づく保安規定に定める。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
<u>頁</u>	 平成21年12月設置許可申請 1.2 具体的方法 (1) 本発電所に係る放射線被ばくを合理的に達成できる限り低減する 方針で,遮へい設備,換気空調設備,放射線管理設備及び放射性廃棄 物廃棄施設を設計し,運用する。 (2) 放射線被ばくを合理的に達成できる限り低くするために,管理区域 を設定して,立入りの制限を行い,外部放射線に係る線量当量,空気 中若しくは水中の放射性物質の濃度及び床等の表面の放射性物質の 密度を監視してその結果を管理区域内の諸管理に反映するとともに必要 な情報を管理区域の入口付近等に表示し,作業環境の整備に努める。 (3) 放射線業務従事者に対しては,被ばく歴を把握し,常に線量を測定評 価し線量の低減に努める。 さらに,各個人については定期的に健康診断を行って常に身体的状態を 	 設置法附則第23条第4項に基づく提出書(補正後) 具体的方法<u>については,以下のとおりとする。</u> (i) 本発電所に係る放射線被ばくを合理的に達成できる限り低減する方針で,遮蔽設備,換気空調設備,放射線管理施設及び放射性廃棄物廃棄施設を設計し,運用する。 (i) 放射線被ばくを合理的に達成できる限り低くするために,管理区域を設定して,立入りの制限を行い,外部放射線に係る線量当量,空気中若しくは水中の放射性物質の濃度及び床等の表面の放射性物質の密度を監視する。 (ii) 放射線業務従事者に対しては,線量を測定評価し線量の低減に努める。 	備考
	 把握する。 (4) 管理区域の外側には、周辺監視区域を設定して、<u>この区域内では人の</u> <u>居住を禁止し、境界にさく又は標識を設ける等の方法によって人の</u>立入 りを制限する。 (5) 原子炉施設の保全のために、管理区域以外の場所であって特に管理を 必要とする区域を保全区域に設定し、立入りの制限、物品の持ち出し の制限等を行う。 (6) 気体及び液体廃棄物の放出については、「発電用軽水型原子炉施設周 辺の線量目標値に関する指針」に基づき線量目標値の達成を可能とする 範囲内で放出管理の目標値を定め、これを超えないように努める。 	 (w) 管理区域の外側には,周辺監視区域を設定して,立入りを制限する。 (v) 気体及び液体廃棄物の放出については,放出管理の目標値を定め,これを超えないように努める。 	
添付書類八 P. 8-11-4	 11. 放射線防護設備及び放射線管理設備 11.1 放射線防護設備 11.1 放射線防護設備 11.1.2 設計方針 (6) 周辺の放射線防護 原子炉施設は通常運転時において原子炉施設からの<u>直接ガン</u> マ線及びスカイシャインガンマ線による空気カーマが,人の居住の可能 性のある敷地境界外<u>において年間 50 µ Gy を下回るように設計</u>する。 	なお,発電用原子炉施設(以下「原子炉施設」という。) 転時において原子炉施設からの直接ガンマ線(以下「直接線」という。) 及びスカイシャインガンマ線(以下「スカイシャイン線」という。) よる <u>敷地境界外の空間線量率が十分に低減できるものとする。</u>	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2. 発電所の放射線管理		
	<u>2.1</u> 管理区域,保全区域及び周辺監視区域の設定	(2) 管理区域及び周辺監視区域の設定	保全区域の削除(設置
	<u>2.1.1</u> 管理区域	<u>(i)</u> 管理区域	許可運用ガイド)
	炉室,使用済燃料の貯蔵施設,放射性廃棄物の廃棄施設等の場所であっ	炉室,使用済燃料の貯蔵施設,放射性廃棄物の廃棄施設等の場所	
	て,その場所における外部放射線に係る線量,空気中の放射性物質の濃度,	であって、その場所における外部放射線に係る線量、空気中の放射	
	又は放射性物質によって汚染された物の表面の放射性物質の密度が <u>経済産</u>	性物質の濃度,又は放射性物質によって汚染された物の表面の放射	
	<u>業省告示「実用発電用原子炉の設置,運転等に関する規則の規定に基づく</u>	性物質の密度が <u>「実用発電用原子炉の設置、運転等に関する規則の</u>	
	<u>線量限度等を定める告示」(第2条)</u> に定められた値を超えるか,又はそ	<u>規定に基づく線量限度等を定める告示」(以下「線量限度等を定める</u>	
	のおそれのある区域はすべて管理区域とする。	<u>告示」という。)</u> に定められた値を超えるか,又はそのおそれのある	
		区域はすべて管理区域とする。	
	実際には部屋,建物その他の施設の配置及び管理上の便宜をも考	実際には、部屋、建物その他の施設の配置及び管理上の便宜をも	
	慮して, <u>第2.1-1図に示すように</u> 原子炉建物,タービン建物,廃棄物処理	考慮して,原子炉建物,タービン建物,廃棄物処理建物,サービス	
	建物,サービス建物,固体廃棄物貯蔵所等 <u>を管理区域とする</u> 。	建物,固体廃棄物貯蔵所等 <u>に管理区域を設定する</u> 。	
	なお、原子炉建物、タービン建物、廃棄物処理建物及びサービス建物に		
	おける管理区域は,添付書類八「11.1 放射線防護設備」に示す遮へい区		
	分図の区分Aを除いた範囲とする。		
	<u>また</u> ,新燃料搬入時,使用済燃料輸送時等,上記管理区域外において	<u>なお</u> ,新燃料搬入時,使用済燃料輸送時等,管理区域外において	
	一時的に上記管理区域に係る値を超えるか、又はそのおそれのある区域が	一時的に上記管理区域に係る値を超えるか、又はそのおそれのある	
	生じた場合は、一時管理区域とする。	区域が生じた場合は、一時管理区域とする。	
	2.1.2 保全区域		
	「実用発電用原子炉の設置,運転等に関する規則」(第1条)に基づき,		
	原子炉施設の保全のために特に管理を必要とする区域であって管理区域以		
	外の区域を保全区域とする。		
	<u>2.1.3</u> 周辺監視区域	<u>(i)</u> 周辺監視区域	
	外部放射線に係る線量、空気中若しくは水中の放射性物質の濃度	外部放射線に係る線量、空気中若しくは水中の放射性物質の濃度	
	が、経済産業省告示「実用発電用原子炉の設置、運転等に関する規則の規	が, 「線量限度等を定める告示」に定められた値を超えるおそれのあ	
	定に基づく線量限度等を定める告示」(第3条及び第9条)に定められた値	る区域を周辺監視区域とする。	
	を超えるおそれのある区域を周辺監視区域とする。周辺監視区域の境界は	周辺監視区域の境界は実際には管理上の便宜も考慮して設定する。	
	実際には管理上の便宜も考慮して <u>第2.1-1図に示すように</u> 設定する。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.2</u> 管理区域内の管理	<u>(3)</u> 管理区域内の管理	
	管理区域については, 「実用発電用原子炉の設置, 運転等に関する規則」	<u>(i)</u> 管理区域については, 「実用発電用原子炉の設置、運転等に関する規	
	<u>(第8条)</u> に従って,次の措置を講じる。	<u>則」(以下「実用炉規則」という。)</u> に従って,次の措置を講じる。	
	(1) 壁, <u>さく</u> 等の区画物によって区画するほか,標識を設けること	<u>a.</u> 壁, <u>柵</u> 等の区画物によって区画するほか,標識を設けることによ	
	によって明らかに他の場所と区別し、かつ、放射線等の危険性の程度	って明らかに他の場所と区別し、かつ、放射線等の危険性の程度に	
	に応じて人の立入制限,かぎの管理等の措置を講じる。	応じて人の立入制限,かぎの管理等の措置を講じる。	
	(2) 放射性物質を経口摂取するおそれのある場所での飲食及び喫煙を	<u>b.</u> 放射性物質を経口摂取するおそれのある場所での飲食及び喫煙を	
	禁止する。	禁止する。	
	(3) 床,壁,その他人の触れるおそれのある物であって,放射性物質	<u>c.</u> 床,壁,その他人の触れるおそれのある物であって,放射性物質	
	によって汚染されたものの表面の放射性物質の密度が, <u>経済産業省告示</u>	によって汚染されたものの表面の放射性物質の密度が、「線量限度等	
	「実用発電用原子炉の設置、運転等に関する規則の規定に基づく線量限	を定める告示」に定める表面密度限度を超えないようにする。	
	<u>度等を定める告示」(第5条)</u> に定める表面密度限度を超えないように		
	(4) 管理区域のうち汚染又は汚染のおそれのある区域から人が退去し、又	<u>d.</u> 管理区域から人か退去し、又は物品を持ち出そうとする場合には、	美用炉則との記載の整
	は物品を持ら出てうどする場合には、その者の身体及び衣服、腹物等身	その者の身体及び衣服, 腹物等身体に着用している物业びにその持た世であったて物品(この物品な常用にもないたな)	谷
	やに有用している物业のにての持ら山てりとりる物品(ての物品を谷谷 に入れ又は気壮しを担合には、その宏聖又は気壮)の主面のお射性物質	ら田てうとりる初面(ての初面を谷裔に八礼乂は也装した場合には, その家哭又は知准)の実面の故財姓物質の家庭が。の実面家庭阻	
	の密度が(3)の表面密度限度の十分の一を超うないようにする	での存留入は已表)の衣面の放射に物質の名反か <u>し</u> の衣面名反応	
	また 管理区域内は 場所に上り外部放射線に係る線量当量率 放射	(i) 管理区域内は 場所によりなりなり。	
	線業務従事者等の立入頻度等に差異があるので、これらのことを考慮して		
	適切な管理を行う。	下に述べるように適切な管理を行う。	
	2.2.1 遮へい及び換気		
	放射線業務従事者等の放射線被ばくを防護するため、以下に述べるよう		
	に遮へい及び換気を行う。		
	(1) 遮へい		
	放射線業務従事者を外部被ばくから防護するため, 添付書類八の	<u>a</u> . 放射線業務従事者等を外部被ばくから防護するため,遮蔽設計	
	<u>「11.1.3.(1) 遮へい設備」に示す遮へい</u> 設計に基づき管理区域を区分す	に基づき管理区域を区分する。	
	る。また、機器、設備の補修作業においては、必要に応じ、コンクリー		
	トフロック, 鉛, 鋼板等でできた一時的遮へいを使用し, 彼はく低減を 図ス		
	(2) 換 ス おけは業務従事業等ななけけが防死の汚洗によるなぼくから 陸進	ト - 毎日始業政役事業学校報告時時間のの汚洗による地球ノホン防護	
	成別様未伤促争有守を放射性物員しの行楽による彼はくから防護 するため 法付書新しの「11-1-3(9) 施与空調設備」に示す施与空調設	D .	
	7 $$	うつにい、浜太王剛取価によう、王太王の政治に初員の張茂加一刀 低くかろようにするとともに 濃度に広じて適切た <mark>区域区</mark> 分等理を	
	に、濃度に応じて適切な区域区分管理を行う。また、機器、設備の補修作		
	業においては、必要に応じ、区画しフィルタ付局所排風機による換気を行		
	い, 被ばく低減を図る。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2.2.2 線量当量等の測定 放射線業務従事者等の線量の管理が,容易かつ確実に行えるようにする ため <u>放射線測定器</u> により,管理区域の放射線レベル等の状況を把握する。	<u>c</u> . 放射線業務従事者等の線量の管理が,容易かつ確実に行えるよう にするため,プロセス放射線モニタリング設備,エリア放射線モニ タリング設備,放射線サーベイ機器等により,管理区域の放射線レ ベル等の状況を把握する。	管理区域の放射線レベ ル等の状況把握,放射 線管理に用いられる機
本文第5号: P.32	 チ.放射線管理施設の構造及び設備 (1) 屋内管理用の主要な設備の種類 (2) 放射線監視設備 		器の追記
	 (1) 外部放射線に係る線量当量の測定 a. エリア放射線モニタによる測定 管理区域内の外部放射線に係る線量当量を把握するため,管理区域内の主要部分について外部放射線に係る線量当量率を測定し,放射線レベルがあらかじめ設定された値を超えた場合,中央制御室,廃棄物処理制御室及び必要な箇所については現場において警報を出す。 なお,警報は異常の発見を主目的とするところから,その警報設定点は,通常のバックグランド値を基にして定める。 エリア放射線モニタの主な設置場所は,添付書類八の「11.2 放射線管理施設」に示す。 b. サーベイメータによる測定 放射線業務従事者等が特に頻繁に立ち入る箇所については,定期的及び必要の都度サーベイメータによる外部放射線に係る線量当量率の測定を行う。 サーベイメータとしては,次のものを使用する。 β・γ線用サーベイメータ 中性子線用サーベイメータ (2) 空気中の放射性物質の濃度及び表面の放射性物質の密度を測定する。 a. 排気モニタによる測定 以下の排気モニタにより建物内の空気中の放射性物質の濃度を常に監視し,放射能レベルがあらかじめ設定された値を超えた場合は、中央制御室において警報を出し,適切な処置がなされるよう運転員の注意を喚起する。 		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	なお,これらの排気モニタは,後に述べる気体廃棄物放出管理の目		
	的も持っている。		
	排気筒モニタ		
	原子炉棟排気モニタ		
	b. サンプリングによる測定		
	放射線業務従事者等が特に頻繁に立ち入る箇所については、サンプ		
	リングにより空気中の放射性物質の濃度及び床等の表面の放射性物質		
	の密度の測定を定期的及び必要の都度行う。		
	(3) 系統内の放射能測定		
	原子炉施設が正常に運転されていることを確認するため、系統内の気		
	体及び液体中の放射性物質の濃度を測定する。		
	a. プロセス放射線モニタによる測定		
	プロセス放射線モニタは,空気中又は水中の放射性物質の濃度を常		
	に監視し、放射能レベルが、あらかじめ設定された値を超えた場合は、		
	中央制御室において警報を出し、適切な処置がなされるよう運転員の		
	注意を喚起する。また、液体廃棄物処理系排水モニタについては、廃		
	棄物処理制御室においても警報を出す。		
	なお、警報は異常の発見を目的とするところから、その警報設定点		
	は通常のバックグランド値を基にして定める。		
	主なモニタは, 添付書類八の「11.2 放射線管理設備」に示す。		
	b. サンプリングによる測定		
	主な系統については、定期的及び必要の都度サンプリングにより放		
	射性物質の濃度を測定する。		
	2.2.3 人の出入管理		
	(1) 管理区域への立入制限		
	管理区域への立入りは、あらかじめ指定された者で、かつ必要な場合		
	に限るものとする。		
	なお,管理区域への立入制限は,チェックポイントにおいて行う。		
	(2) 出入管理の原則		
	a. 管理区域の出入りはチェックポイントを経由して行う。		
	b. 管理区域に立ち入る者には,所定の保護衣類,線量当量測定器等を		
	着用させる。		
	c. 管理区域のうち汚染又は汚染のおそれのある区域から退出する者に		
	は、体表面モニタ等によって表面汚染検査を行わせる。		
	d. チェックポイントにおいて, 管理区域の人の出入りを確認し, 記録		
	する。		
	(3) 管理区域内での遵守事項		
	a. 指定された場所以外では, 飲食及び喫煙を禁止する。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	b. 異常事態の発生又はそのおそれがある事象を発見した場合は, 直ち		
	に必要箇所へ連絡させ、その指示に従わせる。		
	2.2.4 物品の出入管理		
	管理区域への物品の持ち込み及び持ち出しは、チェックポイントを経由		
	して行う。ただし、燃料及び大型機器等の搬出入に際しては、原子炉建物,		
	タービン建物,廃棄物処理建物等の機器搬入口に臨時の出入管理設備を		
	設けて出入管理を行う。		
	官理区域は、放射性物質によって汚染された物の表面の放射性物質の密		
	度及び空気中の放射性物質の濃度か法令に定める管理区域に係る値を超え		
	るおそれのない区域である放射線管理区域と、表面の放射性物質の密度又		
	は空気中の放射性物質の濃度が法令に定める管理区域に係る値を超えるか		
	又は超えるおそれのめる区域とに区分する。		
	さらに放射線管理区域は、その外部放射線に係る線重当重率の高低によ		
	り、また、表面汚染密度又は空気中の放射性物質の濃度か法令に定める管		
	理区域に係る値を超えるか义は超えるおそれのある区域は、外部放射線に		
	係る線量当量率に加え空気中の放射性物質の濃度又は床等の表面の放射性		
	物質の密度の高低によりそれぞれ細区分し、段階的な出人管理を行うこと		
	によって管理区域へ立ち人る者の被はく管理等が、容易かつ確実に行える		
	ようにする。		
	2.2.6 作業管理		
	管理区域での作業は、放射線業務従事者の線量を合理的に達成できる限		
	り低減することを旨として原則として次のように行う。		
	(1) 事前に作業環境に応じて放射線防護具類の着用、時間制限等必要な条		
	件を定め、放射線業務従事者の個人被ばく歴を考慮して合理的な作業計		
	また、必要に応じて事前に作業訓練を行うことも考慮する。		
	(2) 作業中には、必要に応じ、外部放射線に係る線量当量率及び空気中の		
	放射性物質の濃度を測定し、必要な場合には、一時的遮へいの使用、除		
	染等を行い。作業環境の保全に努める.		
	(3) 請自業者の作業管理については 当社放射線業務従事者に進じて行う		
	ほか. 立会等により指導監督を行う.		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2.3 保全区域内の管理		
	保全区域は,「実用発電用原子炉の設置,運転等に関する規則」(第8条)		
	の規定に基づき,標識を設ける等の方法によって明らかに他の場所と区別		
	し、かつ、管理の必要性に応じて人の立入制限、かぎの管理、物品の持出		
	制限等の措置を講じる。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.4</u> 周辺監視区域内の管理	<u>(4)</u> 周辺監視区域内の管理	
	「実用発電用原子炉の設置,運転等に関する規則」(第8条)の規定に	周辺監視区域については、「実用炉規則」の規定に基づき、人の居住	
	基づき,周辺監視区域は人の居住を禁止し,境界に <u>さく</u> 又は標識を設ける	を禁止し、境界に <u>柵</u> 又は標識を設ける等の方法によって周辺監視区域	
	等の方法によって周辺監視区域に業務上立ち入る者以外の者の立入りを制	に業務上立ち入る者以外の者の立入りを制限する。	
	限する。		
	周辺監視区域の外部放射線に係る線量,空気中の放射性物質の濃度及	周辺監視区域の外部放射線に係る線量,空気中の放射性物質の濃度	
	び表面の放射性物質の密度は, <u>経済産業省告示「実用発電用原子炉の設置,</u>	及び表面の放射性物質の密度は, <u>「線量限度等を定める告示」</u> に定める	
	<u>運転等に関する規則の規定に基づく線量限度等を定める告示」(第2条)</u>	値以下に保つ。 <u>具体的には、以下に述べるように管理を行う。</u>	
	に定める値以下に保つ。		
	<u>具体的には、</u> 外部放射線に係る線量については、管理区域の外側におい	(i) 外部放射線に係る線量については,管理区域の外側において3か月	
	て3か月について1.3mSvを超えないよう管理する。空気中の放射性物質	について1.3mSvを超えないよう管理する。	
	の濃度については、管理区域との境界を壁等によって区画するとともに、	(ii) 空気中の放射性物質の濃度については、管理区域との境界を壁等に	
	管理区域内の放射性物質の濃度の高い空気 <u>や水</u> が容易に流出することのな	よって区画するとともに, 管理区域内の放射性物質の濃度の高い空気	
	いよう換気系統 <mark>及び排水系統</mark> を管理する。	が容易に流出することのないよう換気系統を管理する。	
	<u>また,</u> 表面の放射性物質の密度については,「 <u>2.2</u> 管理区域内の管理」	<u>(iii)</u> 表面の放射性物質の密度については、「 <u>(3)</u> 管理区域内の管理」に	
	に述べたように人及び物品の出入管理を十分に行う。	述べたように人及び物品の出入管理を十分に行う。	
	これらの基準を満足していることを確認するために,管理区域外におい		
	て、定期的に外部放射線に係る線量当量率及び外部放射線に係る線量当量		
	の測定を行うとともに、必要に応じて、随時放射線サーベイを行う。		
	なお,周辺監視区域境界外においては,経済産業省告示「実用発電用原		
	子炉の設置,運転等に関する規則の規定に基づく線量限度等を定める告示」		
	(第3条及び第9条)に定める線量限度及び濃度限度以下に管理するが,		
	その方法については,「2.6 放射性廃棄物の放出管理」で述べる。		
	また,その監視については,「3. 周辺監視区域境界及び周辺地域の放射		
	線監視」で述べる。		
l			

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.5</u> 個人被ばく管理	<u>(5)</u> 個人被ばく管理	
	<u>管理区域に立ち入る</u> 者の個人被ばく管理は,線量を <u>常に</u> 測定評価すると	<u>放射線業務従事</u> 者の個人被ばく管理は,線量を測定評価するとともに定	
	ともに定期的及び必要に応じて健康診断を実施し、身体的状態を把握する	期的及び必要に応じて健康診断を実施し,身体的状態を把握することによ	
	ことによって行う。	って行う。	
	なお,請負業者の放射線業務従事者の個人被ばく管理については,「実		
	用発電用原子炉の設置, 運転等に関する規則」 に定められるものについて,		
	当社の放射線業務従事者に準じて扱う。		
	(1) 管理区域立入前の措置		
	「実用発電用原子炉の設置,運転等に関する規則」(第1条)に従っ		
	て,原子炉の運転,原子炉施設の保全,核燃料物質又は核燃料物質に		
	よって汚染された物の運搬,貯蔵,廃棄又は汚染の除去等の業務に従事す		
	る者であって、管理区域に立ち入る者を放射線業務従事者とする。		
	また,放射線業務従事者に対しては,あらかじめ次のような措置を講		
	じる。		
	a. 放射線防護に関する教育,訓練を行う。		
	b. 被ばく歴及び健康診断結果を調査する。		
	(2) 放射線業務従事者の線量限度		
	放射線業務従事者の線量は、経済産業省告示「実用発電用原子炉の設		
	置,運転等に関する規則の規定に基づく線量限度等を定める告示」(第		
	6条)に定める線量限度を超えないようにする。		
	(3) 線量の管理		
	放射線業務従事者の線量が線量限度を超えないよう被ばく管理上必要		
	な措置を講じる。		
	a. 外部被ばくによる線量の評価		
	(a) 放射線業務従事者の外部被ばくによる線量の評価は,管理区域内		
	において, 蛍光ガラス線量計等の線量当量測定器を着用させ, 外部		
	被ばくによる線量当量の積算値の定期的な測定等により行う。		
	(b) 管理区域に立ち入る場合には,上記線量当量測定器の着用を確認		
	するとともに、警報付ポケット線量計等を着用させ、外部被ばくに		
	よる線量当量をその日ごとに測定する。		
	(c) 特殊な作業に従事する者に対しては, その作業に応じて適切な測		
	定器,例えば中性子線源取扱い作業などに関しては中性子用ポケッ		
	ト線量計等を着用させ、その都度線量当量の測定を行う。		
	b. 内部被ばくによる線量の評価		
	(a) 放射線業務従事者の内部被ばくによる線量の評価は,ホールボ		
	ディカウンタによる体外計測法又は作業環境の空気中の放射性物質		
	の濃度を測定することにより行う。		
	(b) ホールボディカウンタによる測定は発電所入所時(放射線業務従		
	事者として勤務を開始する時),退所時並びに定期的及び必要に応		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	じて行う。 (c) 放射性物質の体内摂取が考えられる場合には,必要に応じてバイ オアッセイを行う。 c. 放射線業務従事者の線量評価結果は,本人に通知する。 d. 個人の線量評価結果は,定期的に記録するとともに以後の放射線管 理及び健康管理に反映させる。 なお, <u>見学者等</u> 管理区域に一時的に立ち入る者については, <u>その都</u> <u>度警報付ポケット線量計等を着用させ,</u> 外部被ばくによる線量当量の測定 により <u>評価</u> を行う <u>ほか,必要に応じて内部被ばくによる線量の評価を行 う</u> 。	なお, <u>放射線業務従事者以外の者で</u> 管理区域に一時的に立ち入る者に ついては, 外部被ばくによる線量当量の測定 <u>等</u> により <u>管理</u> を行う。	
	 (4) 健康管理 a.「労働安全衛生規則」(第44条及び第45条)による健康診断のほか「電離放射線障害防止規則」(第56条)の規定に基づき放射線業務従事者について健康診断を実施し、常にその健康状態を把握する。 b. 健康診断結果及び線量の評価結果による医師の勧告等を考慮し、必要ある場合は、保健指導及び就業上の措置を講じる。 c. 発電所内において放射線障害が発生した場合又はそのおそれがある場合は必要な応急措置をとる。 		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	 2.6 放射性廃棄物の放出管理 金電所外に放出される気体及び液体廃棄物は、次に述べるように厳重に 空理を行い、周辺監視区域外の空気中及び水中の放射性物質の濃度が経済 産業省告示「実用発電用原子炉の設置、運転等に関する規則の規定に基づ く線量限度等を定める告示」(第9条)に定める値を超えないようにする。 さちに,「発電用軽水型原子炉施設における放出放射性物質の測定に関する指針」に 基づき,発電所から放出される放射性物質について放出管理の目標値を定 め、「発電用軽水型原子炉施設における放出放射性物質の測定に関する指 か」に素づく測定を行い、これを超えないように努める。 在、「空電和出業のである蒸気式空気抽出器及び起動停止用蒸気 式空気抽出器 (以下「空気抽出器」という。)の排ガスについては、気 体廃棄物の主要なものである蒸気式空気抽出器及び起動停止用蒸気 式空気抽出器 (以下「空気抽出器」という。)の排ガスについては、気 体廃棄物処理系活性炭式希ガスホールドアップ塔 (以下,「ホールドアッ プ塔」という。)によって放射能を減衰させた後、ホールドアップ塔排 ガスモニクによりるの放射性物質の濃度を連続的に監視しながら排気筒 へ喜く。 (2) 各基物の排気については、換気空調系ごとにフィルタによる処理を 行った後、排気筒又はサイトバンカ建物排気ロへ導く。 (2) 権力物の排気については、換気空調系ごとにフィルタによる処理を 行った後、排気筒又はサイトバンカ建物排気ロへ導く。 (2) 査は物の排気については、換気空調系ごとにフィルタによる処理を 行った後、排気筒又はサイトバンカ建物排気回へ導く。 (2) 査は取りていたけにような効射性物質の濃度を連続的に監視しながら排気筒	(6) 飲料性廃棄物の放出に当たっては、周辺監視区域外の空気中 及び水中の放射性物質の濃度が「 <u>線量限度等を定める告示」</u> に定める値 を起えないように <u>厳重な管理を行う</u> 。 、 ちらに、「線量目標値に関する指針」に基づき、発電所から放出され 方放射性物質について放出管理の目標値を定め、「発電用軽水型原子炉 施設における放出放射性物質の測定に関する指針」に基づく測定を行 い、これを超えないように努める。 (1) 気体廃棄物 平常運転時に気体廃棄物を大気中に放出する場合は、排気中の放射 性物質の濃度を排気筒モニタによって連続監視する。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.6.2</u> 液体廃棄物	<u>(i)</u> 液体廃棄物	
	液体廃棄物は、添付書類八の「10.2 液体廃棄物処理系」で述べた処理		
	を行った後、復水器冷却水と混合、希釈して放出する。		
	<u>これらの</u> 液体廃棄物を放出する場合にはあらかじめ、タンクにおいてサ	<u>平常運転時に</u> 液体廃棄物を放出する場合にはあらかじめ、タンクに	
	ンプリングし、放射性物質の濃度を測定し、放出量を確認する。	おいてサンプリングし、放射性物質の濃度を測定し、放出量を確認す	
	また、放出される液体中の放射性物質の濃度は、液体廃棄物処理系排水	る。	
	モニタによって常に監視する。この液体廃棄物処理系排水モニタの測定結	また、放出される液体中の放射性物質の濃度は、液体廃棄物処理系	
	<u>果は、中央制御室又は廃棄物処理制御室に指示、記録するとともに、放射</u>	排水モニタによって常に監視する。	
	能レベルがあらかじめ設定された値を超えた場合は警報を出し、適切な処		
	置がなされるよう運転員の注意を喚起する。		
	液体廃棄物処理系排水モニタの警報設定点は、そのモニタのバックグラ		
	ンド値及び放出に関する管理の目標値を基にして定める。		
	放出管理の具体的内容については、「4.3.3 放出管理」に述べる。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	変更理由
	3. 周辺監視区域境界及び周辺地域の放射線監視	(7) 周辺監視区域境界及び周辺地域の放射線監視	
	「2.6 放射性廃棄物の放出管理」に述べたように、気体及び液体廃棄物	「(6) 放射性廃棄物の放出管理」で述べたように,放射性廃棄物の	
	の放出に当たっては、厳重な管理を行うが、 <u>さらに、</u> 異常がないことの確	放出にあたっては、厳重な管理を行うが、異常がないことの確認に資す	
	認に資するため周辺監視区域境界付近及び周辺地域の放射線監視を行う。	るため, 周辺監視区域境界付近及び周辺地域の放射線監視を行う。	

頁		平成 21 年 12 丿	月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	変更理由
	<u>3.1</u> 空間 <u>放射</u> 線量等の監視			<u>(i)</u> 空間線量等の監視	
	空間 <u>放射</u> 線量,空	間 <u>放射</u> 線量率及て	予空気中の粒子状放射性物質濃度の測定	空間線量,空間線量率及び空気中の粒子状放射性物質濃度 <u>につい</u>	
	<u>は、下表に示すよう</u>	<u>うに</u> 行う。		<u>て,測定頻度及び測定点を定めて監視を</u> 行う。	
	測定対象	測定頻度	測定点及び監視	なお,モニタリングポストにより測定した空間線量率は,中央制御	
	空間放射線量	1 回/ 3 か月	 ・周辺監視区域境界付近及び周辺 地域にモニタリングポイントを 設定 	<u>室で監視する。</u>	
	空間放射線量率	常時	 ・周辺監視区域境界付近にモニタ リングポストを設置 ・中央制御室で常時監視 		
	粒子状放射性 物 質 濃 度	常時	 ・周辺監視区域境界付近にダスト モニタを設置 ・全α, β線測定値を記録する ・フィルタを定期的に回収し核種 分析測定する 		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	変更理由
	<u>3.2</u> 環境試料の放射能監視	<u>(i)</u> 環境試料の放射能監視	
	周辺環境試料 <u>の</u> 放射能監視 <u>は、次のように</u> 行う。	周辺環境試料 <u>について,種類,頻度及び測定核種を定めて</u> 放射能	
		監視 <u>を</u> 行う。	
	環境試料の種類:海水,海底土,土壌,陸上植物,海洋生物等		
	頗 度:原則として年2~4回とする。		
	測 定 核 種:核分裂生成物であるよう素 (I-131) 及びセシウム		
	(Cs-137) 並びに腐食生成物であるコバルト(Co		
	-60)に重点をおく。		
	なお、試料の分析は当社施設で行う。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	変更理由
	3.3 異常時における測定 放射性廃棄物の放出は,排気筒モニタ,液体廃棄物処理系排水モニ ク等により常時監視されており,その指示に万一異常があれば適切 な措置をとるものとする。 万一異常放出があった場合及び必要に応じ,機動性のある放射能観 測車により敷地周辺の空間放射線量率復び放射性物質。濃度を測定し、その範囲、程度等の推定を敏速かつ確実に行う。 放射能観測車には、空間放射線量率測定器、空気中の粒子状放射性物質 濃度及び放射性よう素濃度測定用のサンプラと測定器,無線機等を備える。 さらに、周辺監視区域境界付近に設けるモニタリングポストにより 空間放射線量率を測定し、中央制創室で監視する。	(ii) 異常時における測定 放射性廃棄物の放出は、排気筒モニタ、液体廃棄物処理系排水モ ニタ等により常時監視されており、その指示に万一異常があれば適 切な措置をとるものとする。 万一異常放出があった場合及び必要に応じ、機動性のある放射能 観測車により敷地周辺の空間線量率及び放射性物質の濃度を測定し、 その範囲、程度等の推定を敏速かつ確実に行う。	

4. 放射性廃棄物処理 □ 放射性廃棄物の興 4.1 放射性廃棄物処理の基本的考え方 (1) 放射性廃棄物処 放射性廃棄物廃棄施設の設計及び管理に際しては「実用発電用原子炉の 近射性廃棄物処 設置,運転等に関する規則」を遵守するとともに、「発電用軽水型原子炉 遵守するとともに 施設周辺の線量目標値に関する指針」の考え方に基づくものとする。 とする。	<u>警棄に関する事項</u> L理の基本的考え方 L理施設の設計及び管理に際しては <u>「実用炉規則」</u> を	
4.1 放射性廃棄物処理の基本的考え方 (1) 放射性廃棄物処理の基本的考え方 放射性廃棄物廃棄施設の設計及び管理に際しては「実用発電用原子炉の 放射性廃棄物処理の基本的考え方 (1) 放射性廃棄物処理の基本的考え方 設置,運転等に関する規則」を遵守するとともに、「発電用軽水型原子炉 遵守するとともに 施設周辺の線量目標値に関する指針」の考え方に基づくものとする。 とする。	└理の基本的考え方 └理施設の設計及び管理に際しては <u>「実用炉規則」</u> を	
放射性廃棄物廃棄施設の設計及び管理に際しては <u>「実用発電用原子炉の</u> 放射性廃棄物 放射性廃棄物 遊置,運転等に関する規則」を遵守するとともに,「発電用軽水型原子炉 遵守するとともに 施設周辺の線量目標値に関する指針」の考え方に基づくものとする。 とする。	L理施設の設計及び管理に際しては <u>「実用炉規則」</u> を	
 <u>設置,運転等に関する規則」</u>を遵守するとともに,<u>「発電用軽水型原子炉</u> <u>施設周辺の線量目標値に関する指針」</u>の考え方<u>に基づくものとする。</u> <u>と</u>する。 		
<u>施設周辺の線量目標値に関する指針」</u> の考え方 <u>に基づくものとする。</u> とする。	, <u>「線量目標値に関する指針」</u> の考え方に <mark>基づくもの</mark>	先行プラント反映に伴
		う削除
 (1) 気体廃棄物については、その主なものである空気抽出器排ガスをホール ドアップ塔に通し、排ガス中の放射能を十分減衰させ、監視しながら排気 筒から大気に放出する。 また、他の排気については下記の対策を講じることにより、排気中の 放射性物質の低減を図った後、監視しながら排気筒から大気に放出する。 a. 蒸気タービンのグランドシールに復水貯蔵タンクの水を加熱し蒸発 させた放射性物質の濃度が十分低い蒸気を用いることにより、グラン ド部からの戻り蒸気が流入するグランド蒸気復水器からの排ガス中の 放射性物質を無視できる程度とする。 b. 復水器真空ボンブは原子炉の起動時、原子炉で発生した蒸気が復水 器に流入するまで使用することとし、復水器真空ボンブからの排ガス 中の放射性物質の濃度を十分低いものとする。 c. 汚染の可能性のある区域からの換気空調設備の排気については、フ ィルタで処理することにより、排気中に含まれる粒子状放射性物質を 無視できる程度とする。 (2) 液体廃棄物については、液体廃棄物処理系において素留等の処理を行い、原則として放射性物質の濃度がごく低い廃液を除いては環境放出を 行かず、補給水として再使用する。 (3) 固体廃棄物に、その種類に応じてドラム缶等に詰めて貯蔵所管するか、 又は貯蔵槽等に貯蔵する。 可燃性雑固体及び不燃性強度体廃薬物貯蔵所に貯蔵保管するか、 及射性物質が発散しないような措置を請じて固体廃棄物貯蔵所に貯蔵 等により減容し、ドラム缶等に詰めて日体廃薬物貯蔵所に貯蔵 保管する。 使用活制御捧等の放射化された機器等は、燃料ブールに貯蔵する。 なお、必要に応じて、固体廃棄物は廃棄事業者の廃棄施設へ廃棄する。 		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	4.2 気体廃棄物処理		
	4.2.1 気体廃棄物の発生源		
	通常運転時に発生する気体廃棄物中の放射性物質として、炉心燃料中で		
	核分裂の際に生成される放射性希ガス及びよう素並びに冷却材中の酸		
	素、アルゴン等の放射化によって生成される気体状放射化生成物を考える。		
	核分裂生成希ガス及びよう素は、燃料棒被覆管に損傷があれば冷却材中		
	に漏えいし、気体状放射化生成物とともに主蒸気に移行してタービンに運		
	ばれ、空気抽出器から気体廃棄物処理系へ移る。		
	一方、ポンプ、弁等の機器からの漏えいによって換気空調設備の排気に		
	一部の核分裂生成希ガス及びよう素が含まれる。		
	通常運転時における気体廃棄物の主な放出経路は次のとおりである。		
	(第4.2-1図参照)		
	(1) 空気抽出器排ガス	<u>(2) 気体廃棄物の発生源及び放出管理目標値</u>	ガイドとの整合
	空気抽出器排ガスに含まれる気体状の放射性廃棄物は、炉心燃料から	気体廃棄物の主なものは, 蒸気式空気抽出器及び起動停止用蒸気式空	放射性廃棄物の主な発
	の漏えいがある場合の核分裂生成希ガス及びよう素並びに酸素及びアル	<u>気抽出器(以下「空気抽出器」という。)の</u> 排ガス,換気空調設備排気	生源の追記
	ゴンの放射化により生成される気体状放射化生成物とからなる。	及び復水器真空ポンプ排ガスである。	
	この排ガスは、ホールドアップ塔に通して放射能を十分減衰させ、排		
	ガスフィルタを通して排気筒から大気に放出する。		
	(2) 換気空調設備排気		
	ポンプ、弁等の機器からの漏えいによって原子炉建物、タービン建物		
	<u>等の排気に若干の核分裂生成希ガス及びよう素が混在する。換気空調設</u>		
	備排気は、通常はフィルタにより排気中の微粒子をろ過した後、排気筒		
	から大気に放出する。		
	<u>(3) 復水真空ポンプ排ガス</u>		
	短時間停止後起動する場合で、復水器真空度確立のため復水真空ポ		
	<u>ンプを運転する場合には、復水器真空ポンプ排ガスに復水器に残留する</u>		
	核分裂生成希ガス及びよう素が含まれる。		
	この排ガスは、排気筒から大気に放出する。		
	4.2.2 気体廃棄物の推定放出量		
	気体廃棄物として放出される放射性希ガス(以下「希ガス」という。)		
	及び放射性よう素(以下「よう素」という。)の放出量の推定は、「発電用	▶ 比較表 P.22 麥煎	
	軽水型原子炉施設周辺の線量目標値に対する評価指針」により行う。		
	4.2.2.1 気体廃棄物放出量推定のための前提		
	(1) 原子炉施設の稼動率		
	原子炉施設の稼動率は、年間80%とする。		
	(2) 炉心燃料からの希ガス漏えい率及び冷却材中のよう素濃度		
	炉心燃料から冷却材への全希ガス漏えい率(以下「全希ガス漏えい率」	<u>ل</u>	

頁	平成 21 年 12 月設置許可	「申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	という。)fは,年間平均を想定した30分減	衰換算値で, 3.7×10 ⁹ Bq/sと \		
	する。(以下「 f 」を無次元の値として用レ	いる。)		
	希ガス各核種の漏えい率R _i (Bq/s)は,(4	4.2-1) 式で計算する。		
	これらの結果を第4.2-1表に示す。			
	Ri=2.62 · f · Yi · $\lambda i^{0.4}$ · $e^{-\lambda it}$	(4.2-1)		
	ここで、			
	Ri :希ガスの核種iの漏えい率(B	q/s)		
	f : 全希ガス漏えい率 (3.7×10 ⁹)			
	Yi :核種 i の核分裂収率(%)			
	λ _i :核種 i の崩壊定数(s ⁻¹)			
	t :炉心燃料から漏えい後の減衰時	b間(s)		
	换気系排気	$t = 1.8 \times 10^{3} s$		
	復水器真空ポンプ排ガス	$t=4.32 imes10^4 s$		
	空気抽出器排ガス	$t=1.44 \times 10^{5} s$ (Kr)		
		$t=2.59 imes 10^{6} s~(Xe)$		
	また、炉心燃料からのよう素の漏えい率」 計算し、冷却材中のよう素濃度Ai (Bq/g) は Ii=2.47・f・Yi・ λ i ^{0.5} Ai= $\frac{Ii}{M(\lambda i + \beta + \gamma)}$ ここで、 Ii : 核種 i の炉心燃料からの漏えい率 f : 全希ガス漏えい率 (3.7×10 ⁹) Yi : 核種 i の核分裂収率 (%) λi : 核種 i の崩壊定数 (s ⁻¹) Ai : 核種 i の冷却材中濃度 (Bq/g) M : 冷却材保有量 (g) β : 原子炉冷却材浄化系のよう素除: $\beta = \left(1 - \frac{1}{DF}\right) \cdot \frac{FC}{M}$ DF : 原子炉冷却材浄化系流量 (g/s) γ : よう素の主蒸気への移行率 (s ⁻¹) $\gamma = CF \cdot \frac{FS}{M}$	 i (Bq/s) は, (4.2-2) 式で は, (4.2-3) 式で計算する。 (4.2-2) (4.2-3) ≤ (Bq/s) ≤ (Bq/s) ≤ (s⁻¹) 5染係数 	比較表 P. 22~23 参照	
	CF:よう素の主蒸気中への移行		/	

FS:主蒸気流量 (g/s) パラメータ及び計算結果を第4 2-2表に示す ・ 比較表 P.22~23 参照	
パラメータ及び計算結果を第4-2-2表に示す	
4.2.2.2 気体状放射化生成物の放出量	
原子炉内で酸素及びアルゴンの放射化により生成された気体状放射化生	
成物は、空気抽出器排ガスとして抽出される。比較的半減期の長いアルゴ	
ン-41が、ホールドアップ塔通過後環境へ放出されることになるが、その	
推定放出率は、核分裂生成希ガスに比べて無視し得る程度である。	
4.2.2.3 放射性希ガス及び放射性よう素の放出量	
(1) 放出量の計算方法	
a、空気抽出器排ガス中の希ガス及びよう素	
空気抽出器排ガス中の希ガス及びよう素は、次により計算する。	
(a) $ au$ 水器から空気抽出器に移行する希ガス及びよう素の割合け そ	
$h = \frac{1}{2} $	
(b) 空気抽出器排ガスの減衰に用いられるホールドアップ塔の希ガス	
の保持時間は、キャノン30日間、クリプトン40時間とする	
(c) 空気抽出器推力ス中に全まれるよう素は ホールドアップ塔によ	
り十分に減衰するので無視する。	
b. 復水器真空ポンプの運転による排ガス中の希ガス及びよう素	
復水器真空ポンプの運転による排ガス中の希ガス及びよう素は、次	
により計算する。	
(a) 復水器真空ポンプの運転による排ガス中の希ガスの年間放出量	
は、1.25×10 ⁴ Bqに全希ガス漏えい率(各号炉3.7×10 ⁹)を乗じた値とし、	
放出回数は年間5回とする。この場合,放出希ガスの実効エネルギ / / 比較表 P.24 参照	
は、(4.2-1) 式を用い、減衰時間を12時間として計算した希ガス	
の核種組成から求める。	
(b) 復水器真空ポンプの運転による排ガス中のよう素-131及びよう	
素-133の年間放出量は、ともに0.4Bqに全希ガス漏えい率(3.7×	
10 ⁹)を乗じた値とし、放出回数は年間5回とする。	
c. 換気系から放出される希ガス及びよう素	
タービン建物等の換気系から放出される希ガス及びよう素は、次に	
より計算する。	
(a) 希ガスの放出量は, 第4.2-3表の係数に炉心燃料からの希ガス各	
核種の漏えい率(Bq/s)を乗じて計算する。	
この場合,放出希ガスの実効エネルギは,(4.2-1)式を用い減	
豪時間を30分として計算した希ガスの核種組成から求める。	
(b) よう素の放出量は, 第4.2-3表の数値に4.2.2.1(2)で求めた冷却	
材中のよう素 -131 及びよう素 -133 の濃度(Bq/g)を乗じた値と	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	する。 d. 定期検査時に放出されるよう素-131 定期検査時のよう素-131の放出量は, 2 Bqに全希ガス漏えい率 (3.7×10 ⁹)を乗じた値とする。 (2) 希ガス及びよう素の放出量 a. 希ガスの放出量 希ガスの放出量及び実効エネルギの計算結果は,第4.2-4表に示す とおりとなる。 b. よう素の放出量 よう素の放出量の計算結果は,第4.2-5表に示すとおりとなる。	→ 比較表 P. 24 参照	
	4.2.3 放出管理 気体廃棄物の放出に当たっては,排気筒において放出放射性物質を測 定し,周辺監視区域外における線量及び放射性物質の濃度が,経済産業省 告示「実用発電用原子炉の設置,運転等に関する規則の規定に基づく線量 限度等を定める告示」に定める周辺監視区域外における線量限度及び空気 中の濃度限度を超えないようにするとともに「発電用軽水型原子炉施設周 辺の線量目標値に関する指針」に基づき,希ガス及びよう素の放出管理目 標値を下表のように設定し,これを超えないように努める。	気体廃棄物の放出に当たっては、「イ 核燃料物質及び核燃料物質に よって汚染された物による放射線被ばくの管理の方法、(6) 放射性廃 棄物の放出管理」に述べたように「線量目標値に関する指針」に基づき、 放射性希ガス(以下「希ガス」という。)及び放射性よう素(以下「よ う素」という。)の放出管理目標値を以下のように設定する。 比較表 P. 25 参照	
添付書類九 再掲: P.9-4-5	4.2.2 気体廃棄物の推定放出量 気体廃棄物として放出される <u>放射性希ガス(以下「希ガス」という。)</u> 及び <u>放射性よう素(以下「よう素」という。)</u> の放出量 <u>の推定</u> は, <u>「発電用</u> 軽水型原子炉施設周辺の線量目標値に対する評価指針」により行う。	気体廃棄物として放出される <u>希ガス</u> 及び <u>よう素の年間</u> 放出量は, <u>「発</u> <u>電用軽水型原子炉施設周辺の線量目標値に対する評価指針」(以下「線</u> <u>量目標値に対する評価指針」という。)</u> に <u>基づき,以下により推定する</u> 。	
添付書類九 再掲: P.9-4-5	 4.2.2.1 気体廃棄物放出量推定のための前提 (1) 原子炉施設の稼動率 原子炉施設の稼動率は、年間80%とする。 (2) 炉心燃料からの希ガス漏えい率及び冷却材中のよう素濃度 炉心燃料から冷却材への全希ガス漏えい率(以下「全希ガス漏え い率」という。)fは、年間平均を想定した30分減衰換算値で、3.7 ×10⁹Bq/sとする。(以下「f」を無次元の値として用いる。) 		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	希ガス各核種の漏えい率Ri (Bq/s) は, (4.2-1) 式で計	算する。	
	これらの結果を第4.2-1表に示す。		
添付書類九	$R_{i} = 2.62 \cdot f \cdot Y_{i} \cdot \lambda_{i^{0.4}} \cdot e^{-\lambda_{it}} $	4.2-1)	
再揭:	ここで,		
P. 9−4−5~6	Ri :希ガスの核種 i の漏えい率 (Bq/s)		
	f : 全希ガス漏えい率 (3.7×10 ⁹)		
	Yi :核種 i の核分裂収率(%)		
	λ _i : 核種 i の崩壊定数 (s ⁻¹)		
	t : 炉心燃料から漏えい後の減衰時間(s)		
	換気系排気 t=1.8×10 ³ s		
	復水器真空ボンブ排ガス t=4.32×10 ⁴ s		
	空気抽出器排ガス t=1.44×10°s	(Kr)	
	$t = 2.59 \times 10^{\circ} s$	(Xe)	
	また 仮心燃料からのよる妻の渥えい家L ($P_{\alpha}/_{\alpha}$) け (A	2 - 2	
	また、炉心燃料がらのよう糸の個人(平11 (Dq/s) は、(4 式で計質) 公扣材中のよう表濃度A: (Bq/g) け ($4.9-$	3) オで	
	式で可算し、111年初年のより未版反AI(Dq/g)は、(4.2 計質する		
	$\Gamma_{i} = 2 47 \cdot f \cdot Y_{i} \cdot \lambda_{i}^{0.5} \tag{(}$	(1, 2-2)	
		4, 2-3)	
	$Ai = \frac{M(\lambda_i + \beta + \gamma)}{M(\lambda_i + \beta + \gamma)}$		
	ここで、		
	Ii :核種 i の炉心燃料からの漏えい率 (Bq/s)		
	f : 全希ガス漏えい率 (3.7×10 ⁹)		
	Yi :核種 i の核分裂収率(%)		
	λ _i :核種 i の崩壊定数 (s ⁻¹)		
	Ai :核種 i の冷却材中濃度 (Bq/g)		
	M : 冷却材保有量 (g)		
	eta :原子炉冷却材浄化系のよう素除去率 (s^{-1})		
	(1) FC		
	$\beta = \left(1 - \frac{1}{\mathbf{DF}}\right) \cdot \frac{1}{\mathbf{M}}$		
	DF:原子炉冷却材浄化糸の除染係数		
	FC:原子炉冷却材净化糸流量(g/s)		
	γ :よう素の主蒸気への移行率 (s ⁻¹)		
	FS FS		
	$\gamma = Ur^{*} - \frac{M}{M}$		
	UF ・よう糸の土奈风中、W移11 刮合 FS ・土蒸気 法書 (g/g)		
	1.5 · 土 ※ X (加 里 (8/8) パラメータ及び計管結里を第4 9-9実に示す		
: <u> </u>	/ / / / / / 八〇回 舟阳不で わせい 4 4 4 4 り 0		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類九 再掲: P.9-4-7~8	 4.2.2.3 放射性希ガス及び放射性よう素の放出量 (1) 放出量の計算方法 a. 空気抽出器排ガス中の希ガス及びよう素 空気抽出器排ガス中の希ガス及びよう素は、次により計算する。 (a) 復水器から空気抽出器に移行する希ガス及びよう素の割合は、それぞれ100%及び1%とする。 (b) 空気抽出器排ガスの減衰に用いられるホールドアップ塔の希ガスの保持時間は、キセノン30日間、クリプトン40時間とする。 (c) 空気抽出器排ガス中に含まれるよう素は、ホールドアップ塔により十分に減衰するので無視する。 b. 復水器真空ポンプの運転による排ガス中の希ガス及びよう素は、次により計算する。 (a) 復水器真空ポンプの運転による排ガス中の希ガス及びよう素は、次により計算する。 (a) 復水器真空ポンプの運転による排ガス中の希ガスの年間放出量は、1.25×10⁶Bqに全希ガス漏えい率(3.7×10⁶)を乗じた値とし、放出回数は年間5回とする。この場合、放出希ガスの実効エネルギは、(4.2-1)式を用い、減衰時間を12時間として計算した希ガスの技種組成から求める。 (b) 復水器真空ポンプの運転による排ガス中のよう素-131及びようまのの 	 (i) 空気抽出器排ガス中の<u>放射性</u>希ガス及び<u>放射性</u>よう素 <u>希ガスの放出量は、炉心燃料から冷却材への全希ガス漏えい率(以下「全希ガス漏えい率」という。),放出されるまでの減衰時間等から 希ガス各核種の漏えい率を算出し、原子炉施設の稼働率を考慮して求 める。</u> よう素は、<u>気体廃棄物処理系活性炭式希ガスホールドアップ塔</u>によ り十分に減衰するので無視する。 (ii) 復水器真空ボンプの運転による排ガス中の<u>放射性</u>希ガス及び<u>放射</u> 性よう素 <u>希ガス及びよう素の放出量は、全希ガス漏えい率に係数を乗じて求 める。</u> 	
	 素-133の年間放出量は、ともに0.4Bqに全希ガス漏えい率(3.7× 10°)を乗じた値とし、放出回数は年間5回とする。 た.換気系から放出される希ガス及びよう素 タービン建物等の換気系から放出される希ガス及びよう素は、次に より計算する。 (a) 希ガスの放出量は、第4.2-3表の係数に炉心燃料からの希ガス各 核種の漏えい率(Bq/s)を乗じて計算する。 この場合、放出希ガスの実効エネルギは、(4.2-1)式を用い減衰 時間を30分として計算した希ガスの核種組成から求める。 (b) よう素の放出量は、第4.2-3表の数値に4.2.2.1(2)で求めた冷却 材中のよう素-131及びよう素-133の濃度(Bq/g)を乗じた値とす る。 d. 定期検査時に放出されるよう素-131 定期検査時に放出されるよう素-131 2Bqに全希ガス漏えい率(3.7 ×10°)を乗じた値とする。 	 (iii) 換気系から放出される<u>放射性</u>希ガス及び<u>放射性</u>よう素 希ガスの放出量は,希ガス各核種の漏えい率に,漏えい係数を乗じ, 原子炉施設の稼働率を考慮して求める。 通常運転時に放出されるよう素は,全希ガス漏えい率,冷却材保有 量,原子炉冷却材浄化系のよう素除去率,よう素の主蒸気への移行率 等から算出した冷却材中の濃度に,漏えい係数を乗じ,原子炉施設の 稼働率を考慮して求める。また,定期検査時に放出されるよう素は, 全希ガス漏えい率に係数を乗じて求める。 	
¦			

頁	平成 21 年 12 月設置許可申請				設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類九 再揭:	4.2.3 放出管理 <u>・・・</u> 希ガス及び を超えないように努	里 ス及びよう素の放出管 うに努める。	予理目標値を <u>下表</u> のよう	うに設定し,これ	<u>この年間放出量の結果から、気体廃棄物中の</u> 希ガス及びよう素の放 出管理目標値を <u>以下</u> のように設定し、これを超えないように努める。	
P. 9-4-9		放出管理目標值 (Bq/y)			故出管理目標値 $4.0 \times 10^{14} B_{\rm Q}/v$ (希ガス)	
		希ガス	<u>よう素</u> -131		$\frac{1.8 \times 10^{10} \text{Bq/y} (1-131)}{1.8 \times 10^{10} \text{Bq/y} (1-131)}$	
		4. 0×10^{14}	1.8×10^{10}			

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>4.3</u> 液体廃棄物 <u>処理</u>	<u>(3)</u> 液体廃棄物 <u>の発生源及び放出管理目標値</u>	ガイドとの整合
	4.3.1 液体廃棄物の発生源		
	液体廃棄物の主なものは、各建物の機器からのドレン、各建物の床ドレ	液体廃棄物の主なものは、各建物の機器からのドレン、各建物の床	放射性廃棄物の主な発
	ン,分析室等で発生する化学廃液,保護衣類等を除染する際に生じる洗濯	ドレン,分析室等で発生する化学廃液,保護衣類等を除染する際に生	生源の追記
	廃液、手洗い時に生じる廃液等である。液体廃棄物処理系の放射性物質濃	じる洗濯廃液,手洗い時に生じる廃液等である。	
	度等説明図を第4.3-1図に示す。		
	(1) 機器ドレン・床ドレン廃液		
	機器ドレン廃液は、ポンプ、弁等各機器からの漏えい水、サンプルラ		
	インの排出液等からなり、化学的純度は高く、脱塩水に近いが放射能レ		
	ベルは通常局い (約4×10°Bq/cm°)。		
	床ドレン廃液は、原子炉建物、ドフイワエル、タービン建物等で発生 ・ 機理 以、 、 床道には、 恋 作 見いた たい、 化学特殊 広い切え、 お針体		
	し、機器トレン廃液に比へ発生重は少ない。化学的純度は低く、放射能 し、、した、完全はないが、比較的低い、(約4×10 2 Pa/ x^{3})		
	レベルは一足 にはないか,比較的低い(約4×10 Bq/Cm)。		
	こ405は、 (松冲廃果初処理示の低电等及廃松示 (际朱际数約10) て 加理する		
	- ² 2,75。 		
	貯蔵タンクに回収して再使用する。		
	(2) 化学廃液		
	化学廃液は、分析室ドレン等からなる。化学的純度は低く、酸性ある		
	いはアルカリ性であることが多く、放射能レベルは一般に高い(約4×		
	10^3 Bq/cm ³).		
	これらは、液体廃棄物処理系の高電導度廃液系(除染係数約10 ³)で		
	処理する。		
	濃縮装置及び脱塩装置で処理された処理済液(約4Bq/cm ³)は,再使		
	用するが、一部については放射性物質濃度が低いことを確認して環境		
	に放出する場合(約4×10 ⁻¹ Bq/cm [°])もある。		
	沈濯廃液は、保護な類等を际架する際に生しる沈濯廃液、手洗い時に		
	生しる廃液寺でめり、化子的純度は低く、成別能レベルも低い(約 $1 \operatorname{Pr}(\operatorname{ar}^3)$		
	1Dq/Cm/)。 これらけ 液体感棄物処理系の洗湿感液系(除洗係粉約50)で処理す		
	これのない、低体定来的定星来の加福定低米(赤米休数450)(定星) る ろ過装置で処理された処理溶液(約2×10 ⁻² Bg/cm ³)け 放射性物		
	質の濃度が低いことを確認し、環境に放出する。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書		
 添付書類九 再掲: P.9-4-13	4.3.3 放出管理 <u>・・・</u> に基づき,放射性液体廃棄物の放出管理目標値を <u>下表</u> のように設 定し,これを超えないように努める。	<u>この年間放出量の結果から,</u> 放射性液体廃棄物の放出 <u>下の</u> ように設定し,これを超えないように努める。 <u>放出管理目標値 3.7×10¹⁰Bq/y(トリチウムを除</u>		
	放出管理目標値(<u>³H</u> を除く) (Bq/y) 3.7×10 ¹⁰			

E後)	備考
山祭理日博はない	
山官垤口悰旭を以	
<u> </u>	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>4.4</u> 固体廃棄物 <u>処理</u>	<u>(4)</u> 固体廃棄物 <u>の保管管理</u>	ガイドとの整合
	4.4.1 固体廃棄物の種類とその発生量		
	固体廃棄物には,使用済樹脂,濃縮廃液等をドラム缶詰め処理した	固体廃棄物には、使用済樹脂、濃縮廃液等をドラム缶詰め処理した	
	もの,使用済フィルタ,布,紙等の雑固体廃棄物及び使用済制御棒	もの、使用済フィルタ、布、紙等の雑固体廃棄物及び使用済制御棒等	
	等の放射化された機器等がある。液体廃棄物発生量及び設計運転条件から	がある。	
	推定した固体廃棄物の種類別推定発生量を第4.4-1表に示す。		
	固体廃棄物の取扱いは,添付書類八の「10.3.3 主要機能」による。		
	4.4.9 促黨管理		
	4.4.2 休日日生 国休廃棄物を詰めたドラム缶竿け 動地内の国休廃棄物貯蔵所に貯蔵	田休廃棄物を詰めたドラム缶竿け 発電所敷地内の田休廃棄物貯蔵	
	回や廃来物を印めた「ノムロ寺は, 放地門の回や廃来物則蔵所に則蔵 保答」 その後必要な措置をとる	面体廃来物を留めたドクム面守は, <u>元電所</u> 放地内の面体廃来物灯蔵 所に貯蔵保管1 その後必要な措置をとる	
	また 一部の不燃性雑固体廃棄物は放射性物質が飛散したいようた	また 一部の不燃性雑固体盛棄物は放射性物質が飛散したいようた	
	措置を講じて固体廃棄物貯蔵所に貯蔵保管し、その後必要な措置をと	措置を講じて固体廃棄物貯蔵所に貯蔵保管し、その後必要な措置をと	
	3.	る。 	
	使用済制御棒等の放射化された機器等は、燃料プールに貯蔵し、そ	使用済制御棒等の放射化された機器等は、燃料プールに貯蔵し、そ	
	の後必要な措置をとる。	の後必要な措置をとる。	
	固体廃棄物貯蔵所は, 管理区域とし, 周辺の放射線サーベイ等を行い厳	固体廃棄物貯蔵所は、管理区域とし、周辺の放射線サーベイ等を行	
	重に管理する。	い厳重に管理する。	

頁	平成 21 年 12 月設置許可申請					設置法附則第23条第4項に基づく提出書(補正後)	備考	
	<u>5</u> .	平常運転時における-	一般公衆の受ける緕	<u>量評価</u>		<u>ハ 敷地境界外における実効線量の算定の条件及び結果</u>		
		「発電用軽水型原子	炉施設周辺の線量	目標値に関する	<u>指針」</u> に基づき,	<u>「線量目標値に関する指針」</u> に基づき、気体廃棄物中の希ガスからの		
	気	体廃棄物中の希ガス	へからのγ線,液	体廃棄物中に含	まれる放射性物質	γ線,液体廃棄物中に含まれる放射性物質(よう素を除く。)並びに気体		
	(よう素を除く。)並び	ドに気体廃棄物中及	しび液体廃棄物中	に含まれるよう素	廃棄物中及び液体廃棄物中に含まれるよう素に起因する実効線量を,「線		
	に	起因する実効線量を	<u>- , 「発電用軽水型</u>	原子炉施設周辺	の線量目標値に対	<u>量目標値に対する評価指針」</u> に従って評価する。		
	<u>_</u>	<u>る評価指針」</u> に従って	く評価する。					
	5.1	線量の計算				(1) 線量の評価条件		
	5.1.	1 気体廃棄物中の放	(射性希ガスのγ線)	こ起因する実効線	量	(i) 気体廃棄物中の放射性希ガスのγ線に起因する実効線量		
						<u>a.</u> 年間放出量及び γ 線実効エネルギ		
	<u>5.1.</u>	<u>1.1</u> 連続放出の場合				<u>(a)</u> 連続放出の場合		
	(1)	計算のための前提約	条件					
		a. 年間平均放出率						
		第4.2-4表に示し	した空気抽出器及び	バ換気系からの希 第111、2 年間三日	ガス放出率並びに			
		原子炉施設の稼動 ² 実効エネルギな下=	率(80%)を基に事 キャニナ	早田した年間平均	の希カス放出率と			
		夫効エイルイを下す	文に小9。					
		希ガス放出	率(Bq/s)	約1.1×107				
			ルギ (MeV)	約2.9×10 ⁻¹				
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
添付書類九		第4.2-4表 放	文射性希ガス放出	量及び実効エネ	ルギ			
図表:								
P. 9-4-19		故 出 経 路	γ線実効エネルギ	希ガス放出率	希ガス放出量			
			(MeV)	(Bq/s)	(Bq/y)			
	蒸気式空気抽出器及び 起動停止用蒸気式空気抽出器		約 5.5×10 ⁻²	約 7.7×10 ⁶	約 1.9×10 ¹⁴	<u>空気抽出器及び換気糸からの希カスの年間放出量及びγ線美効 エネルギは、約3.5×10¹⁴Bg/y及び約2.9×10⁻¹MeVとする。</u>		
			約25×10 ⁻¹	_	約46×10 ¹³			
1	14	タービン建物	約 8.2×10-1	約 3.7×106	約 9.3×10 ¹³			
	換気		約22×10-1	約12×106	約 2 2 × 1013			
	风系		₩J 2.2×10 ⁻¹	亦5 1.5 ~ 10*	₼ 5 5.5 × 10-5			
		廃棄物処理建物	約 2.2×10 ⁻¹	約 1.3×106	約 3.3×10 ¹³			
			約 2.9×10-1 ※	_	約40×1014			
					小14.0~10			
۲ <u> </u>		1. 廿山酒の七共吉く	<pre></pre>					
		□ . 瓜山伽の有効向く 下表に 地気管で	♪)	及7脳吹出) 演産な	テート			
		「AXIC, PF XU同V」	/···山山川, 山口口里(土)	火い 八山 し述皮で	· / J [·] ブ o			

頁 平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
地上高 (m) 出口直径 吹出し速度 (m) (m/s)		
約 57 約 2.8 約 28		
取りれ 取りとの 取りとの 取りとの 放出額の有効高さは、排気筒の地上高さに吹上げ高さを加算したもの を風測実験により補正した値(第5.1-1支に示す。)とする。 なお、吹上げ高さは、下記の式により計算する。 AH-3 $\frac{W}{U}$.D ここで、 AH : 吹上げ高さ(m) リーカ ここで、 △日 : 吹出し速度(m/s) D リーカ ここで、 ○日: : 取口別年間風速逆数の平均(s/m) : こ、気象条件 気象条件には、現地における2005年1月から2005年12月までの観測による実測値を使用する。 ただし、静穏(通常の風速計で観測した風速が0.5m/s未満)の場合は、風速を0.5m/sとし、風速0.5~2.0m/sのときの風向出現額度(第 5.1-2裏に示す。)に応じて各風向に比例配分する。 年間平均濃度の計算は、排気筒を中心として16方位に分割した隣側12方位の 敷地度界外について行い、希ガスのッ線による実効線量が最大となる地 底での線量を求める。 また、陸側12方位の周辺監視区域境界外についても、希ガスのッ線 による実効線量が最大となる地点での線量を水める。 なお、参考として海側についても方位ごとに計算を行う。 これらの地点は、第5.1-1回に示す。 (2) 線量の計算は、 単気筒から放出された希ガスの放射性雲による計算地点における空気カーマ率は、(5.1-1) ここで、 D ここで、 D ここで、 D 二、計算地点(x, y, 0)における空気カーマ率(µGy/h)	上較表 P.34 参照	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	K_1 : 空気カーマ率への換算係数 ($\frac{\text{dis} \cdot \text{m}^3 \cdot \mu \text{Gy}}{\text{MV} \cdot \text{Parth}}$)		
	E : v線の実効エネルギ (MeV/dis)		
	μ_{en} :空気に対する γ 線の線エネルギ吸収係数 (m ⁻¹)		
	μ : 空気に対する γ 線の線減衰係数 (m ⁻¹)		
	r : 放射性雲中の点 (x', y', z') から計算地点 (x, y, 0)		
	までの距離 (m)		
	B(μr) : 空気に対するγ線の再生係数		
	B(μr) =1 + α (μr) + β (μr) ² + γ (μr) ³		
	ただし, μ en, μ , α , β , γ については, 0.5MeV の γ 線に対する値を		
	用い,以下のとおりとする。		
	$\mu \text{ en} = 3.84 \times 10^{-3} \text{ (m}^{-1}) \qquad \mu = 1.05 \times 10^{-2} \text{ (m}^{-1})$		
	$\alpha = 1.000$ $\beta = 0.4492$ $\gamma = 0.0038$		
	χ(x', y', z'): 放射性雲中の点(x', y', z')における濃度(Bq/m³)		
	なお, χ(x', y', z')は,(5.1-2)式により計算する。		
	$\chi(\mathbf{x}',\mathbf{y}',\mathbf{z}') = \frac{Q}{2\pi \cdot \sigma_{\mathbf{y}} \cdot \sigma_{\mathbf{z}} \cdot \mathbf{U}} \cdot \exp(-\frac{\mathbf{y}^{\prime 2}}{2\sigma_{\mathbf{y}^{2}}})$		
	×[exp{ $-\frac{(z'-H)^2}{2\sigma_z^2}$ }+exp{ $-\frac{(z'+H)^2}{2\sigma_z^2}$] (5.1-2)		
	ここで,		
	Q :放出率(Bq/s)		
	U : 放出源高さを代表する風速 (m/s)		
	H : 放出源の有効高さ (m)		
	σy : 濃度分布の y'方向の拡がりのパラメータ (m)		
	σ z :濃度分布の z'方向の拡がりのパラメータ(m)		
	計算地点における年間の実効線量は、計算地点を含む方位及びその隣		
	接方位に向かう放射性雲のγ線からの空気カーマを合計して、次の		
	(5.1-3) 式により計算する。		
	$H_{\gamma} = K_2 \cdot f_h \cdot f_0 \cdot (D_L + D_{L-1} + D_{L+1}) $ (5.1-3)		
	H_{γ} :計算地点における美効線量 (μ Sv/y)		
	K2 : 空気カーマから美効緑重への換昇係数 (μ SV/ μ Gy)		
	Ih : 永座の巡へい休致 fo · · 民住接粉		
	向かう放射性雪によろ年間平均の v 線に上ろ空		
	$\times (\mathcal{M} - \mathcal{A} - (\mu Gy/y)) = (\mathcal{M} - \mathcal{A} - A$		
	得られる空気カーマ率 D を放出モード,大気安定		
	1		<u>I</u>

頁	平成 21 年 12 月設置許可申請				設置法附則第23条第4項に基づく提出書(補正後)	備考
		度別風向分布及び	『風速分布を考慮	憲して年間につい		
		て積算して求める) _o			
	<u>5.1.1.2</u> 間欠放出の場合				(b) 間欠放出の場合	
	(1) 計算のための前提系	条件				
	a. 年間放出量及び放 復水 哭喜 空 ポンン	【出回数 プからの柔ガスの名	王明廿山皇及789	主体テラルギけ		
	第4.2-4表に示すと	おりとする。	平间	天効エイルイは,	復水器真空ポンプからの希ガスの年間放出量及び <u>γ線</u> 実効エ	
	放出回数は、各号	<u> </u>	-3.		ネルギは, <u>約4.6×10⁺Bq/y及び約2.5×10 ⁺MeVとする。</u>	
添付書類九	第 4.2-4 表 方	な射性希ガス放出量	及び実効エネル	/ギ		
図表:	放出経路	γ線実効エネルギ (MoV)	希ガス放出率 (Ra/s)	希ガス放出量 (Bo/y)		
P. 9-4-19	蒸気式空気抽出器及び	(NIE V) 約55×10 ⁻²	(Dq/s) 約7.7×106	(Dq/y)		
	起動停止用蒸気式空気抽出器	赤り 5.5 ~ 10 ~ 2	示5 7.7 ~ 105	示9 1.9 ~ 1014		
	復水器真空ポンプ	約 2.5×10 ⁻¹	_	約 4.6×10 ¹³		
	タービン建物	約 8.2×10 ⁻¹	約 3.7×106	約 9.3×10 ¹³		
	気原子炉建物	約 2.2×10 ⁻¹	約 1.3×106	約 3.3×10 ¹³		
	 糸 廃棄物処理建物 	約 2.2×10 ⁻¹	約 1.3×106	約 3.3×10 ¹³		
	合計	約 2.9×10-1 ※	_	約 4.0×10 ¹⁴		
		· · · · · · · · · · · · · · · · · · ·		i		
	5.1.1.1(1) b. と	同じとする。				

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類九 再掲: P.9-5-2~3	 5.1.1.1 連続放出の場合 計算のための前提条件 気象条件 気象条件は、現地における2005年1月から2005年12月までの観測による実測値を使用する。 ただし、静穏(通常の風速計で観測した風速が0.5m/s未満)の場合は、風速を0.5m/sとし、風速0.5~2.0m/sのときの風向出現頻度(第5.1-2表に示す。)に応じて各風向に比例配分する。 年間平均濃度の計算には、第5.1-3表に示す風向別大気安定度別風速逆数の総和を、排気筒有効高さの計算には、第5.1-4表に示す風向別風速逆数の平均を使用する。 	 <u>b</u>. 気象条件 気象条件は、現地における 2005 年 1月から 2005 年 12 月までの観 測による実測値を使用する。 	
	 <u>a</u>. 藤重計算地点 線量の計算は,排気筒を中心として16方位に分割した陸側12方位の 敷地境界外について行い,希ガスのγ線による実効線量が最大となる地 点での線量を求める。 また,陸側12方位の周辺監視区域境界外についても,希ガスのγ線 による実効線量が最大となる地点での線量を求める。 なお,参考として海側についても方位ごとに計算を行う。 これらの地点は,第5.1-1図に示す。 	<u>c</u> . 計算地点 線量の計算は,排気筒を中心として16方位に分割した陸側12方 位の敷地境界外について行い,希ガスのγ線による実効線量が最 大となる地点での線量を求める。	
	 c.気象条件 5.1.1.1(1) c.と同じ気象データを用い、年間平均濃度の計算には、 第5.1-4表に示す風向別大気安定度別風速逆数の平均を使用する。 d.線量計算地点 5.1.1.1(1) d.と同じとする。 (2)線量の計算方法 計算地点を含む方位及びその隣接方位に対する風向出現頻度(3方位の風向出現頻度の合計)並びに年間放出回数を基に、その3方位に向かう合計回数を二項確率分布の信頼度を67%として求め、更にこれを3方位の風向出現頻度で比例配分する。 以上の方法で求めた3方位に向かう合計回数を第5.1-5表に示す。あわせて、隣接方位への風向も含めた風向出現頻度を第5.1-5表に示す。 計算地点における空気カーマ率、実効線量は、(5.1-1)及び(5.1-3)式により計算する。 		

頁		平成 21 年1	12月設置許可申			設置法附則第23条第4項に基づく提出書(補正後)	備考
	 5.1.1.3 計算結: 敷地境界外に 敷地境界外に 行った結果は、 位の敷地境界外の の東約340mの敷 また、周辺監 ガスのy線によめる。これによ ある。これによい たる実効線量 あり、その実効 	果 陸側12方位につい 第5.1-6表に示す のうち,希ガスの2 な地境界であり,その 記視区域境界外陸側1 る実効線量の計算を れば,陸側12方位の 量が最大となるのに 動線量は年間約6.4µ	て希ガスのγ縦 トとおりである。 y線による実効線 D実効線量は年間 2方位及び参考と た行った結果は, D周辺監視区域境 は 北気筒の東約2 μ Svである。	Rによる実効線量の による実効線量の これによれば、「 泉量が最大となるの 問約6.0μSvである。 こして海側4方位に 第5.1-7表に示す 電界外のうち、希ガ 260mの周辺監視区) 計算 御 12 12 12 12 12 12 12 12 12 12		
	 5.1.2 液体廃棄物中に含まれる放射性物質に起因する実効線量 5.1.2.1 計算のための前提条件 (1) 放射性物質の年間放出量 トリチウムを除き<u>年間</u>3.7×10¹⁰Bq,トリチウムは<u>年間</u>3.7×10¹²Bqとする。 なお、トリチウムを除く放射性物質の核種組成は、次のとおりとする。 				¹² Bqとす -る。	 (ii) 液体廃棄物中に含まれる放射性物質に起因する実効線量 <u>a.</u>年間放出量 液体廃棄物中に含まれる放射性物質の年間放出量は、トリチウ ムを除き3.7×10¹⁰Bq/y、トリチウムは3.7×10¹²Bq/yとする。 	
		組成(%)	◎ Q ===================================	組成(%)			
	54M n		5 r				
	⁵⁹ F e	7	¹³¹ I	2			
	⁵⁸ C o	3	¹³⁴ C s	5			
	⁶⁰ C o	30	¹³⁷ C s	8			
	(2) 海水中にま 海水中にお 射性物質の年 年間の復水 10 ⁹ m ³ /y <u>である</u> この場合, 量から算出し は次のとおり	るける放射性物質の激 ける放射性物質の激 間放出量を年間の後 器冷却水量は,循 と記の年間放出量 た復水器冷却水が である。	豊度 豊度は,復水器将 夏水器冷却水量で 環水ポンプの稼 気水ポンプの稼 な水口におけるか	う却水放水口の濃度 一部除した値とする。 動率を <u>80%として</u> , び年間の復水器冷調 放射性物質の年間	とし,放 約2.3× 即水) 政 度	<u>b.</u> 海水中における放射性物質の濃度 海水中における放射性物質の濃度は,復水器冷却水放水口の濃 度とし,放射性物質の年間放出量を年間の復水器冷却水量で除し た値とする。 <u>なお,</u> 年間の復水器冷却水量は,循環水ポンプの稼動率を <u>考慮</u> した値,約2.3×10 ⁹ m ³ /yを用いる。	
頁	平成 21 年	12月設置許可申請		設置法附則第23条第4項に基づく提出書(補正後)	備考		
----------------------------------	--	--	--	--------------------------	----		
	44 17		1				
		午间平均褒度 (Bq/cm ⁻)					
	\mathbb{C} 1	新 5. 2 \times 10 約 6. 4 \times 10 ⁻⁶					
	⁵⁹ F. e	約1.1×10 ⁻⁶					
	⁵⁸ C o	約48×10 ⁻⁷					
		351.0×10^{-6}					
	⁸⁹ S r	約3.2×10 ⁻⁷					
	⁹⁰ S r	約1.6×10 ⁻⁷					
	¹³¹ I	約3.2×10 ⁻⁷					
	¹³⁴ C s	約8.0×10 ⁻⁷					
	¹³⁷ C s	約 1. 3×10 ⁻⁶					
	${}^{3}\mathrm{H}$	約 1.6×10 ⁻³					
5.1.2. 実 一8表 た; 「5.1	2 緑重の計算力伝 効線量の計算は次により行い そ~第5.1-10表に示す値と だし,液体廃棄物中に含まれ 1.3 放射性よう素に起因する $H_w=365\cdot\sum_i K_{wi}\cdot A_{wi}$ $A_{wi}=C_{wi}\cdot\sum_k (CF)_{ik}\cdot W_k\cdot f_{mk}\cdot f_{ki}$	ハ,計算に用いるパラメータ する。 いるよう素に起因する実効線量 実効線量」において計算する。	マ等は,第5.1 量については, 。 (5.1-4) (5.1-5)				
	こで、 Hw :海産物を摂取して 365:年間日数への換算 Kwi :核種 i の実効線 Awi :核種 i の実効線 Awi :核種 i の摂取率 Cwi :海水中の核種 i の (CF) ik :核種 i の海産 Wk :海産物 k の摂 fmk :海産物 k の fki = $\frac{3}{12} + \frac{3}{12}$	た場合の年間の実効線量(μ Sr 算係数 (d/y) 量係数 (μ Sv/Bq) (Bq/d) つ濃度 (Bq/cm ³) 物kに対する濃縮係数 ($\frac{Bq/g}{Bq/cr}$ 取量 (g/d) 場希釈係数 取から摂取までの核種 i の減弱 $\frac{T_{ri}}{0.693\times 365}$ ($1-e^{-\frac{0.693}{T_{ri}}\times 365\times \frac{9}{12}}$	v/y) g) n ³) 衰比 nに対して)				

頁	平成 21 年 12 月設置許可申請				可申請			設置法附則第23条第4項に基づく提出書(補正後)	備考
	 (海藻類に対して) Tri : 核種 i の物理的半減期(d) tk : 海産物k(海藻類を除く。)の採取から摂取までの期間(d) 5.1.2.3 計算結果 液体廃棄物中に含まれる放射性物質(よう素を除く。)による実効線量は、約3.6µSv/yとなる。 5.1.3 放射性よう素に起因する実効線量 実効線量の計算は、次により行い、計算に用いるパラメータ等は、第 				(海藻 の採取から摂 素を除く。)に に用いるパラ	類に対して) 取までの期間 こよる実効線量 ラメータ等は、			
	5.1—8君 <u>5.1.3.1</u> 5.1.3.1.1 (1) 計算 a.よ (a) ² 率	長〜第5.1− 気体廃棄物 気体廃棄物 軍のための前 う素放出量 連続放出 <u>分</u> (80%)を (80%)を ¹³¹]	10表に示す値 中に含まれる 上空気中濃度 前提条件 <u>た</u> <u>た</u> <u>た</u> 基に算出した <u>種</u> [とする。 放射性よう素に の計算 系からのよう 年間平均のよ 放出率(1 約 5.22 約 7.82	こ起因する実 素放出量及び う素放出率を Bq/s) <10 ² <10 ²	効線量 原子炉施設の移 下表に示す。	家動	 (iii) 気体廃棄物中に含まれる放射性よう素に起因する実効線量 a. 年間放出量 (a) 連続放出<u>の場合</u> 換気系からのよう素<u>の年間放出量は、I-131について約1.6</u> ×10¹⁰Bq/y、I-133について約2.5×10¹⁰Bq/yとする。 	
,			第 4.2-5 表	放射性よう素	⑤の放出量				
凶表: P. 9-4-20	 放 出 復水器員 換気系 合 	経 路	¹³ 放出率 (Bq/s) - 約 3.5×10 ² -	¹ I 放出量 (Bq/y) 約 1.5×10 ⁹ 約 8.9×10 ⁹ 約 7.4×10 ⁹ 約 1.8×10 ¹⁰	13 放出率 (Bq/s) - 約 9.7×10 ² -	³ I 放出量 (Bq/y) 約 1.5×10 ⁹ 約 2.5×10 ¹⁰ 一 約 2.6×10 ¹⁰			
							'		

頁	平成 21 年 12 月設置許可申請			申請		設置法附則第23条第4項に基づく提出書(補正後)	備考	
	(b) 間 復 <u>とす</u> こ;	欠放出 <u>分</u> 水器真空 る。 れを下表に た,放出国	ポンプからの ニ示す。 ^{I31} I I33 I I数は,各号炉	 よう素の年間 放出率 約1. 約1. 約1. 	引放出量は, <u>j</u> š (Bq/y) .5×10 ⁹ .5×10 ⁹ とする。	第4.2-5表の値	 (b) 間欠放出<u>の場合</u> 復水器真空ポンプからのよう素の年間放出量は、<u>I-131に</u> ついて、約1.5×10⁹Bq/y、I-133について、約1.5×10⁹Bq/y とする。 	
 添付書類九			第 4. 2-5 表	放射性よう素の	の放出量			
図表: P.9-4-20	放 出 経 路復水器真空ポンプ		13:	¹ I 放出量	13 放出率	³ I 放出量		
			(Bq/s) —	(Bq/y) 約 1.5×10 ⁹	(Bq/s) —	(Bq/y) 約 1.5×10 ⁹		
		運転時	約 3.5×10 ²	約 8.9×10 ⁹	約 9.7×10 ²	約 2.5×10 ¹⁰		
	換気糸	定検時	_	約 7.4×10 ⁹	_	_		
	合	計	_	約 1.8×10 ¹⁰	_	約 2.6×10 ¹⁰		
	 b. 放出源の有効高さ 5.1.1.1(1) b. と同じとする。 c. 気象条件 <u>連続放出の場合は、5.1.1.1(1) c. と同じとする。また、間欠放出 の場合は、5.1.1.2(1) c. と同じとする。また、間欠放出 の場合は、5.1.1.2(1) c. と同じとする。</u> d. 計算地点 敷地境界外であって、年平均地上空気中濃度が最大となる地点とする。 (2) 計算方法 a. 連続放出の場合 計算地点における年平均地上空気中濃度²は、(5.1-2) 式を用い、 隣接方位からの寄与も考慮して、次の(5.1-6) 式により計算する。 b. 気象条件 「(1) 気体廃棄物中の放射性希ガスのy線に起因する実効構 							

頁	平成 21 年 12 月設置許可申請		設置法附則第23条第4項に基づく提出書(補正後)	備考
	$\overline{\chi} = \sum_{j} \overline{\chi}_{jL} + \sum_{j} \overline{\chi}_{jL-1} + \sum_{j} \overline{\chi}_{jL+1} $ (§	5.1-6)		
	ここで、			
	j :大気安定度(A~F)			
	L :計算地点を含む方位			
	b. 間欠放出の場合			
	計算地点における年平均地上空気中濃度の算出に当	áたっては,連続放		
	出の場合と同様、隣接方位からの寄与も含める。			
	また、計算地点を含む方位へ向かう放出回数の計算	算は、5.1.1.2(2)の		
	希ガスの間欠放出の場合と同じ方法による。			
	(3) 計算結果			
	敷地境界外陸側 12 方位で気体廃棄物中に含まれるよう	う素の年平均地上空		
	気中濃度が最大となる地点は,排気筒の東約 340 m であり	り、この地点におけ		
	るよう素-131 及びよう素-133 の年平均地上空気中濃度	度の計算結果を,第		
	5.1-11 表に示すとおり約 1.5×10 ⁻¹⁰ Bq/cm ³ 及び約 2.2×1	10 ⁻¹⁰ Bq/cm ³ である。		
	5.1.3.1.2 線量の計算			
	(1) 被ばく経路と計算式			
	空気中のよう素による被ばく経路は,吸入摂取,葉菜挑	摂取及び牛乳摂取が		
	あり、線量評価の対象年令グループは、成人、幼児及び乳	乳児として,次の計		
	算式を用いる。			
	吸入摂取			
	$H_{I} = 365 \cdot \sum_{i} K_{Ii} \cdot A_{Ii}$	(5.1-7)		
	$A_{Ii} = \mathbf{M}_{\mathbf{a}} \cdot \overline{\chi}_{i}$	(5.1 - 8)		
	葉菜摂取			
	$_{\rm Hv}$ = 365 · $\sum_{\rm i}$ Kti · Avi	(5.1-9)		
	$-\mathbf{M}_{\mathbf{r}} \cdot \mathbf{f}_{\mathbf{r}} \cdot \mathbf{f}_{\mathbf{r}} \cdot \mathbf{f}_{\mathbf{r}} \cdot \mathbf{f}_{\mathbf{r}} = \frac{0.693}{T_{\mathbf{r}}} \mathbf{t}_{\mathbf{r}} \cdot \mathbf{v}_{\mathbf{r}}$			
	$A_{vi} = Mv \cdot Im \cdot It \cdot Id \cdot Fv_1 \cdot e Im \cdot \lambda_1$	(5.1 - 10)		
	午 乳茨取			
	$_{\text{HM}}$ = 365 · \sum_{i} KTi · AMi	(5.1 - 11)		
	$A_{Mi} = \mathbf{M}_{M} \cdot \mathbf{f}_{m} \cdot \mathbf{f}_{t} \cdot \mathbf{f}_{f} \cdot \mathbf{F}_{Mi} \cdot \mathbf{e}^{-\frac{0.693}{\mathrm{T}_{ri}} t_{M}} \cdot \overline{\chi}_{i}$	(5.1 - 12)		
	 Π : 吸八弦取による平间の実効緑重 (μ SV/y) μ : 黄茵珥販による年間の実効始長 (
	□ · 禾米1×以による十回り天別隊里(μ 5V/y)			

頁	平成 21 年 12 月設置許可申請		設置法附則第23条第4項に基づく提出書(補正後)	備考
	H _M :牛乳摂取による年間の実効線量(μSv/	/y)		
	365 :年間日数への換算係数 (d/y)			
	K _{Ii} :核種 i の吸入摂取による実効線量係数	(µ Sv/Bq)		
	KTi : 核種 i の経口摂取による実効線量係数	(µ Sv/Bq)		
	Tri :核種 i の物理的半減期(d)			
	AIi :核種 i の吸入による摂取率 (Bq/d)			
	Avi :核種 i の葉菜による摂取率 (Bq/d)			
	Ami : 核種 i の牛乳による摂取率 (Bq/d)			
	Ma :呼吸率 (cm ³ /d)			
	Mv : 葉菜の摂取量 (g/d)			
	Mm :牛乳の摂取量 (mℓ/d)			
	fm :市場希釈係数			
	ft : 葉菜及び牧草の栽培期間の年間比			
	fd : 葉菜の除染係数			
	ff : 飼料の混合比			
	Fvi :核種iの空気中から葉菜に移行する割	$\frac{\operatorname{Bq/g}}{\operatorname{Bq/cm^3}}$		
	Fmi :核種iの空気中から牛乳に移行する割	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \left(\frac{\operatorname{Bq/m}\ell}{\operatorname{Bq/cm^3}} \right) \end{array} \end{array} \end{array} $		
	$ar{\chi_{\mathrm{i}}}$:核種 i の年平均地上空気中濃度(Bq/cr	n ³)		
	tv : 葉菜の採取から摂取までの期間(d)			
	tm :牛乳の採取から摂取までの期間(d)			
	5.1.3.1.3 計算結果			
	吸入摂取,葉菜摂取及び牛乳摂取による実効線量	遣の計算結果を第5.1−		
	12表に示す。			
	これによれば、気体廃棄物中のよう素の吸入摂取、	葉菜摂取及び牛乳摂取		
	による年間の実効線量は、成人で約0.1µSv/y、幼児	で約0.9µSv/y, 乳児で		
	約0.7µSv/yである。			
	5.1.3.2 液体廃棄物中に含まれる放射性よう素に起因す	-る実効線量		
	5.1.3.2.1 線量の計算			
	次の計算式を用いて計算する。			
	(1) 海藻類を摂取する場合			
	$H_{WT} = K_3 \cdot \sum_{i} \frac{A_{wi}}{A_s} \cdot q_s \cdot (SEE)_i \cdot f_{Si}$	(5.1 - 13)		
	$A_{wi} = C_{wi} \cdot \sum_{k} (CF)_{k} \cdot W_{k} \cdot f_{mk} \cdot f_{ki}$	(5.1-14)		
	~			

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	$A_{s} = C_{ws} \cdot \sum_{k} (CF)_{k} \cdot W_{k} \qquad (5.1-15)$		
	、 ここで,		
	Hwr :海産物を摂取した場合の年間の実効線量(µSv/y)		
	K_3 : 実効線量への換算係数 $\left(\frac{\text{dis} \cdot g \cdot \mu \text{Sv}}{M_2 \text{V} \star \text{Partur}}\right)$		
	Mev • Dd • A		
	qs : 甲状腺中の安定よう素量 (g)		
	Awi :核種 i の摂取率(Bq/d)		
	As : 安定よう素の摂取率 (g/d)		
	(SEE)i : 核種 i の甲状腺に対する比実効エネルギ (<u>MeV</u>)		
	fsi :核種 i の甲状腺中比放射能の減衰係数		
	Cwi :海水中の核種 i の濃度(Bq/cm ³)		
	(CF) _k :よう素の海産物 k に対する濃縮係数 (<u>Bq/g</u>)		
	Bq/cm [*] Wk :海産物kの摂取量(g/d)		
	fmk :海産物kの市場希釈係数		
	fki :海産物kの採取から摂取までの核種iの減衰比		
	$h_{1} = \frac{0.693}{10}$ th (海南新四月) (海南新四月) (海南新西北日本)		
	fki=e Tri (神楽類以外の神座物に対して)		
	fki= $\frac{3}{12} + \frac{\text{Tri}}{0.693 \times 365} (1 - e^{-\frac{0.693}{\text{Tri}} \times 365 \times \frac{9}{12}})$ (海藻類に対して)		
	Tri : 核種 i の物理的半減期(d)		
	tk :海産物k(海藻類を除く。)の採取から摂取までの期間(d)		
	Cws : 海水中の安定よう素の濃度 (g/cm ³)		
	(2) 海藩頪を摂取したい堤合		
	$H_{\rm F} = 365 \cdot \sum_{\rm i} K_{\rm Ti} \cdot A_{\rm Fi}$ (5.1–16)		
	$A_{\Gamma} = C_{Wi} \cdot \sum (CF)_k \cdot W_k \cdot f_{mk} \cdot f_{ki} $ (5.1-17)		
	$\frac{1}{k} = \frac{1}{k} = \frac{1}$		
	ここで,		
	Hr :海産物(海藻類を除く。)を摂取した場合の年間の実効		
	線量(µSv/y)		
	365 :午前日致への換算係数 (d/y)		
	 KTi : 修理1 K種1 (μ Sv/Bq) An: ・ 技種: の堪販索 (Pa/d) 		
	AF1 : (水理 I い) 水以半 (Dq/d) C		

頁	平成 21 年 12 月設置許可申請	設置法附則第	323条第4項に基づく提出書(補正後)	備考		
	(CF) _k :よう素の海産物kに対する濃縮係数(<u>Bq/g</u> Bq/cm ³					
	Wk :海産物k(海藻類を除く。)の摂取量(g/d)					
	fmk : 海産物 k の市場希釈係数					
	fki :海産物kの採取から摂取までの核種iの減衰比					
	$f_{ki} = e^{-\frac{0.693}{T_{ri}}t_k}$					
	Tri : 核種 i の物理的半減期(d)					
	tk :海産物k(海藻類を除く。)の採取から摂取ま	『の期間(d)				
	5.1.3.2.2 計算結果					
	計算結果を第5.1-13表に示す。これによれば、1号,	号及び3号炉				
	による液体廃棄物中に含まれるよう素による実効線量は,	事藻類を摂取す 				
	る場合, 成人で約0.02μSv/y, 幼児で約0.06μSv/y, 乳児 とかろ	ご 新可 0. 07 µ Sv/y				
	また,海藻類を摂取しない場合は,成人で約0.02μSv/y	幼児で約0.05				
	μ Sv/y,乳児で約0.03μ Sv/yとなる。					
	 5.1.3.3 気体廃棄物中及び液体廃棄物中に含まれる放射性よう素を同時に摂取す る場合の実効線量 5.1.3.3.1 線量の計算 次の計算式を用いて計算する。 					
	(1) 海藻類を摂取する場合					
	$H_{T} = K_{3} \cdot \sum_{i} \frac{A_{i}}{A_{s}} \cdot q_{s} \cdot (SEE)_{i} \cdot f_{si}$	(5.1-18)				
	ここで、 Hr :年間の実効線量 (μ Sv/y) K3 :実効線量への換算係数 ($\frac{\text{dis} \cdot \mathbf{g} \cdot \mu Sv}{\text{MeV} \cdot Bq \cdot y}$) Ai :核種 i の摂取率 (Bq/d) ($\frac{\text{dis} \cdot \mathbf{g} \cdot \mu Sv}{\text{MeV} \cdot Bq \cdot y}$)					
	As : 安定よう素の摂取率 (g/d) (5.1-15) 式から得られる値を用いる。 qs : 甲状腺中の安定よう素量 (g) (SEE) i : 核種 i の甲状腺に対する比実効エネルギ fri : 核種 i の甲状腺に対する比実効エネルギ	$\frac{\mathrm{MeV}}{\mathbf{g}\cdot\mathbf{dis}}$)				
	(2) 海藻類を摂取しない場合 $H_{TF} = 365 \cdot \sum_{i} \{K_{Ii} \cdot A_{Ii} + K_{Ti} \cdot (A_{vi} + A_{Mi} + A_{Fi})\}$	5.1-19)				

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
頁	 平成 21 年 12 月設置許可申請 ここで、 Hr : 年間の実効線量(μ Sv/y) 365 : 年間日数への換算係数(d/y) Kn : 核種 i の吸入摂取による実効線量係数(μ Sv/Bq) Kn : 核種 i の経口摂取による実効線量係数(μ Sv/Bq) 5.1.3.3.2 計算結果 計算結果を第 5.1-13 表に示す。これによれば、気体廃棄物中及び液体廃棄物中に含まれるよう素を同時に摂取する場合の実効線量は、海藻類を摂取する場合、成人で約 0.02 μ Sv/y、幼児で約 0.1 μ Sv/y となる。 また、海藻類を摂取しない場合は、成人で約 0.2 μ Sv/y、幼児で約 0.9 μ Sv/y、 乳児で約 0.7 μ Sv/y となる。 	設置法附則第 23 条第 4 項に基づく提出書(補正後)	備考

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>5.2</u> 線量の評価結果	<u>(2)</u> 線量の評価結果	
	敷地境界外における気体廃棄物中の希ガスのγ線による実効線量、液体	敷地境界外における気体廃棄物中の希ガスのγ線による実効線量,	
	廃棄物中の放射性物質(よう素を除く。)による実効線量並びに気体	液体廃棄物中の放射性物質(よう素を除く。)による実効線量並びに気	
	廃棄物中及び液体廃棄物中に含まれるよう素を同時に摂取する場合の	体廃棄物中及び液体廃棄物中に含まれるよう素を同時に摂取する場合	
	実効線量は,それぞれ約6.0μSv/y,約3.6μSv/y及び約0.87μSv/yとな	の実効線量は,それぞれ約6.0 µ Sv/y,約3.6 µ Sv/y及び約0.87 µ Sv/y	
	り, 合計約 10 µ Sv/y である。	となり,合計約10μSv/yである。	
	この値は,「発電用軽水型原子炉施設周辺の線量目標値に関する指針」	この値は, <u>「線量目標値に関する指針」</u> に示される線量目標値50μSv/y	
	に示される線量目標値 50 µ Sv/y を下回る。	を下回る。	
添付書類八	11. 放射線防護設備及び放射線管理設備		
P. 8-11-4	11.1 放射線防護設備		
	11.1.2 設計方針		
	(6) 周辺の放射線防護		
	原子炉施設は通常運転時において原子炉施設からの直接ガンマ	なお,原子炉施設の設計及び管理によって,通常運転時において原	添付八より、直接線及
	線及びスカイシャインガンマ線による空気カーマが,人の居住の可能	<u>子炉施設からの直接線及びスカイシャイン線による空気カーマが、人</u>	びスカイシャイン線に
	性のある敷地境界外において年間50μGyを下回るように設計する。	<u>の居住の可能性のある敷地境界外において年間50μGyを下回るように</u>	関わる設計上の考慮を
	'	する。	記載

上関原子力発電所1号炉 原子力規制委員会設置法 附則第23条第4項に基づく提出書

原子 炉設置許可申請書 本文第十号及び添付書類十記載事項 比較表

平成26年3月 中国電力株式会社

別紙2

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
設置許可申請書		+ 発電用原子炉の炉心の著しい損傷その他の事故が発生した場合における	
添付書類十		当該事故に対処するために必要な施設及び体制の整備に関する事項	
		イ 運転時の異常な過渡変化 事故に対処するために必要な施設並びに発	
		<u>生すると想定される事故の程度及び影響の評価を行うために設定した条</u>	
		件及びその評価の結果	
	<u>1. 安全評価に関する</u> 基本方針	<u>(1)</u> 基本方針	
	1.1 基本的考え方		
	本原子炉施設の安全評価の目的は、以下のとおりである。		
	(1) 安全設計の基本方針の妥当性の確認		
	本原子炉が、固有の安全性と安全確保のために設計した設備により安		
	全に運転できることを示し、原子炉施設の安全設計の基本方針の妥当性		
	を確認する。		
	(2) 立地条件の適否の確認		
	万一,重大な事故が発生したとしても、工学的安全施設により放射性		
	物質が発電所敷地周辺へ多量に放出されるのを防止できることを示し,		
	発電所周辺の一般公衆との離隔に関する妥当性を確認する。		
	原子炉施設の安全設計の基本方針の妥当性は、「発電用軽水型原子炉施設		
	に関する安全設計審査指針」(以下「安全設計審査指針」という。)によ		
	り、また、原子炉の立地条件の適否は、「原子炉立地審査指針及びその適		
	用に関する判断のめやすについて」(以下「原子炉立地審査指針」という。)		
	によりそれぞれ判断されるが、これらの判断の過程で行う安全評価は、		
	「発電用軽水型原子炉施設の安全評価に関する審査指針」(以下「安全評価		
	審査指針」という。),「軽水型動力炉の非常用炉心冷却系の性能評価指針」		
	(以下「ECCS性能評価指針」という。),「発電用軽水型原子炉施設の		
	反応度投入事象に関する評価指針」(以下「反応度投入事象評価指針」と		
	いう。)等に基づいて行う。なお、「安全設計審査指針」及び「安全評価審査		
	指針」の適用に当たっては、「発電用軽水型原子炉施設の安全機能の重		
	要度分類に関する審査指針」(以下「重要度分類審査指針」という。)も併せ		
	て参照する。		
	本原子炉施設の安全設計の基本方針の妥当性を確認する上では、異常状		
	態、すなわち「運転時の異常な過渡変化」及び「事故」について解析し、		
	評価を行う。		
	一方,本原子炉施設の立地条件の適否を判断する上では,「原子炉立地		
	審査指針」に基づき,「重大事故」及び「仮想事故」について評価を行う。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	1.1.1 運転時の異常な過渡変化		
	1.1.1.1 定 義		
	「運転時の異常な過渡変化」とは、原子炉の運転中において、原子炉施		
	設の寿命期間中に予想される機器の単一の故障若しくは誤動作又は運転員		
	の単一の誤操作、及びこれらと類似の頻度で発生すると予想される外乱		
	によって生じる異常な状態に至る事象であって、これらの発生する原因と		
	して以下のものが考えられる。		
	(1) ある弁1個の誤開放又は誤閉止(逆止弁は,通常の流れの方向に対し		
	て閉止することはないと仮定する。)		
	(2) ある単一機器の誤起動又は誤停止		
	(3) ある単一の制御機器の誤動作又は誤操作		
	(4) ある単一の電気系故障		
	(5) ある単一の運転員誤操作		
	これらの原因により、原子炉圧力の変動、原子炉冷却材(以下「冷却材」		
	という。)温度の変動,冷却材量の変動,冷却材流量の変動及び炉心反応		
	度の変動が生じる。		
	これらのパラメータは、もし制御されず放置された場合には、炉心ある		
	いは原子炉冷却材圧力バウンダリに過度の損傷を与える可能性のあるもの		
	である。		
	原子炉圧力の上昇は、それが制御されない場合には、炉心内ボイドを減		
	少させ、正の反応度投入による急速な出力上昇を来し、燃料の過熱による		
	損傷を引き起こし、原子炉冷却材圧力バウンダリを破損させる可能性につ		
	ながる。冷却材(減速材)温度の低下は、減速材密度の上昇を来し、原子		
	炉に正の反応度投入を引き起こす。冷却材量の減少及び冷却材流量の減少		
	は、いずれも燃料の冷却不十分につながり、それが制御されない場合には、		
	やはり燃料の過熱による損傷を引き起こすことが考えられる。冷却材流量		
	の増加は、炉心内ボイドを減少させ、正の反応度投入による出力上昇を来		
	すことが考えられる。正の反応度投入は、原子炉出力上昇につながり、燃		
	料の過熱による破損につながる。		
	<u>1.1.1.2</u> 評価事象	<u>(i)</u> 評価事象	
	本原子炉において評価する「運転時の異常な過渡変化」は, 「安全評価	本原子炉において評価する「運転時の異常な過渡変化」は, <u>「発電</u>	記載の適正化
	<u>審査指針」</u> に基づき、原子炉施設が制御されずに放置されると、炉心ある	用軽水型原子炉施設の安全評価に関する審査指針」(以下「安全評価	
	いは原子炉冷却材圧力バウンダリに過度の損傷をもたらす可能性のある事	<u>審査指針」という。)</u> に基づき,原子炉施設が制御されずに放置され	
	象について、これらの事象が発生した場合における安全保護系、原子炉停	ると、炉心あるいは原子炉冷却材圧力バウンダリに過度の損傷をも	
	止系等の主として「異常影響緩和系」(以下「MS」という。)に属する	たらす可能性のある事象について、これらの事象が発生した場合に	
	構築物,系統及び機器の設計の妥当性を確認する見地から,代表的な事象	おける安全保護系,原子炉停止系等の主として「異常影響緩和系」	
	を選定する。具体的には以下に示す異常な状態を生じさせる可能性のある	(以下「MS」という。)に属する構築物,系統及び機器の設計の妥	
	事象とする。	当性を確認する見地から、代表的な事象を選定する。具体的には以	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	 (1) 炉心内の反応度又は出力分布の異常な変化 a.原子炉起動時における制御棒の異常な引き抜き b.出力運転中の制御棒の異常な引き抜き (2) 炉心内の熱発生又は熱除去の異常な変化 a.原子炉冷却材流量の部分喪失 b.外部電源喪失 c.給水加熱喪失 d.原子炉冷却材活量制御系の誤動作 (3) 原子炉冷却材圧力又は原子炉冷却材保有量の異常な変化 a.負荷の喪失 b.主蒸気隔離弁の誤閉止 c.給水制御系の故障 d.原子炉圧力制御系の故障 e.給水流量の全喪失 なお、「安全評価審査指針」においては、評価すべき具体的な事象として「原子炉冷却材系の停止ループの誤起動」が選定されているが、本原子炉においては、原子炉冷却材再循環系の配管がないことから同事象は選定しない。 	 下に示す異常な状態を生じさせる可能性のある事象とする。 なお、「安全評価審査指針」においては、評価すべき具体的な事象 として「原子炉冷却材系の停止ループの誤起動」が選定されている が、本原子炉においては、原子炉冷却材再循環系の配管がないこと から同事象は選定しない。 a. 炉心内の反応度又は出力分布の異常な変化 原子炉起動時における制御棒の異常な引き抜き 出力運転中の制御棒の異常な引き抜き b. 炉心内の熱発生又は熱除去の異常な変化 原子炉冷却材流量の部分喪失 外部電源喪失 給水加熱喪失 原子炉冷却材流量制御系の誤動作 c. 原子炉冷却材圧力又は原子炉冷却材保有量の異常な変化 負荷の喪失 主蒸気隔離弁の誤閉止 給水制御系の故障 原子炉圧力制御系の故障 給水流量の全喪失 	
	 1.1.1.3 判断基準 想定された事象が生じた場合,炉心は損傷に至ることなく,かつ,原子 炉施設は通常運転に復帰できる状態で事象が収束される設計であることを 確認する。このことを判断する基準は以下のとおりである。 (1) 最小限界出力比(以下「MCPR」という。)が燃料の許容設計限界 1.07以上であること。 (2) 燃料被覆管は,機械的に破損しないこと。すなわち燃料被覆管の円周 方向の平均塑性歪が,1%(以下「1%塑性歪」という。これは<u>線出力</u> 密度が設計用出力履歴の169%となることに相当する。)以下である こと。なお,解析に当たっては,表面熱流束が定格値の169%以下 となることを確認することにより,線出力密度が設計用出力履歴の 169%以下となるとした。 	 (i) 判断基準 想定された事象が生じた場合,炉心は損傷に至ることなく,かつ, 原子炉施設は通常運転に復帰できる状態で事象が収束される設計で あることを確認する。このことを判断する基準は以下のとおりであ る。 a.最小限界出力比(以下「MCPR」という。)が燃料の許容設計 限界1.07以上であること。 b.燃料被覆管は,機械的に破損しないこと。すなわち燃料被覆管 の円周方向の平均塑性歪が,1%(以下「1%塑性歪」という。 これは表面熱流束169%に相当する。)以下であること。 	
	<u>(5)</u> 旅村エンクルビは、 <u>「反応度な八事家評価指針」</u> に示された燃料 の許容設計限界以下であること。	<u> </u>	市中戦の辺辺上115

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
		に示された燃料の許容設計限界以下であること。	
	(4) 原子炉冷却材圧力バウンダリにかかる圧力は,最高使用圧力である	<u>d.</u> 原子炉冷却材圧力バウンダリにかかる圧力は,最高使用圧力で	
	8.62MPa[gage]の1.1倍の圧力9.48MPa[gage]以下であること。	ある8.62MPa[gage]の1.1倍の圧力9.48MPa[gage]以下であること。	
	なお、上記の判断基準のほかに、想定した「運転時の異常な過渡変化」		
	ごとに更に具体的な基準を用いる場合には、以下に述べる各「運転時の		
	異常な過渡変化」の説明の中でその具体的な基準を記述する。		
ļ			

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	 1.1.2 事 故 1.1.2 定 義 「事故」とは、「1.1.1 運転時の異常な過渡変化」で記載する「運転時の異常な過渡変化」を超える異常な状態であって、発生する頻度はまれであるが、発生した場合は原子炉施設からの放射性物質の放出の可能性があり、原子炉施設の安全性を評価する観点から想定する必要のある事象をいう。 		
	 1.1.2.2 評価事象 本原子炉において評価する「事故」は、「安全評価審査指針」に基づき、 原子炉施設から放出される放射性物質による敷地周辺への影響が大きくな る可能性のある事象について、これらの事象が発生した場合における工学 的安全施設等の主としてMSに属する構築物、系統及び機器の設計の妥当 性を確認する見地から、代表的な事象を選定する。具体的には、以下に示 す異常な状態を生じさせる可能性のある事象とする。 (1) 原子炉冷却材の喪失又は炉心冷却状態の著しい変化 a. 原子炉冷却材売豊の喪失 c. 原子炉冷却材ポンプの軸固着 (2) 反応度の異常な投入又は原子炉出力の急激な変化 a. 制御棒落下 (3) 環境への放射性物質の異常な放出 a. 放射性気体廃棄物処理施設の破損 b. 主蒸気管破断 c. 燃料集合体の落下 d. 原子炉冷却材喪失 e. 制御棒落下 (4) 原子炉冷却材喪失 b. 可燃性ガスの発生 c. 動荷重の発生 なお、原子炉冷却材ポンプの軸固着については、本原子炉では、原子炉 冷却材流量の喪失の評価に十分包絡されるため事象の解析を省略する。 	上較表 P. 55 参照	
	1.1.2.3 判断基準 想定された事象が生じた場合,炉心の溶融あるいは著しい損傷のおそれ がなく,かつ,事象の過程において他の異常状態の原因となるような2次 的損傷が生じなく,さらに放射性物質の放散に対する障壁の設計が妥当で	▶ 比較表 P. 56 参照	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	あることを確認する。このことを判断する基準は以下のとおりである。 炉心は著しい損傷に至ることなく、かつ、十分な冷却が可能であること。 燃料エンタルピは、「反応度投入事象評価指針」に示された制限値を超えないこと。 原子炉冷却材圧力バウンダリにかかる圧力は、最高使用圧力である 8.62MPa[gage]の1.2倍の圧力10.34MPa[gage]以下であること。 原子炉格納容器バウンダリにかかる圧力は、最高使用圧力 310kPa[gage]以下であること。 周辺の公衆に対し、著しい放射線被ばくのリスクを与えないこと。ただし、「著しい放射線被ばくのリスク」については、「安全評価審査指針」 によることとする。 なお、上記の判断基準のほかに、想定した「事故」ごとに更に具体的な基準を用いる場合には、以下に述べる各「事故」の説明の中でその具体的な基準を記述する。 	▶ 比較表 P. 56 参照	
	 1.1.3 重大事故及び仮想事故 1.1.3.1 定 義 「重大事故」及び「仮想事故」とは、「原子炉立地審査指針」に基づき、 原子炉立地条件の適否を評価する観点から想定する必要のある事象をいう。 		
	 1.1.3.2 評価事象 本原子炉において評価する「重大事故」及び「仮想事故」は、「安全評 価審査指針」に基づき以下の事象とする。 (1) 重大事故 前記「事故」の解析結果を参考として、それらの「事故」の中から放 射性物質の放出の拡大の可能性のある事故を取り上げ、技術的に最大と 考えられる放射性物質の放出量を想定することとし、「安全評価審査指 針」に従い、原子炉格納容器(以下「格納容器」という。)内放出に係る 事故として原子炉冷却材喪失(以下「LOCA」という。)を、また、格 納容器外放出に係る事故として主蒸気管破断をそれぞれ想定する。 (2) 仮想事故 「重大事故」として取り上げた事故について、より多くの放射性物質 の放出量を仮想した事故を想定する。 		
	1.1.3.3 判断基準 原子炉施設の立地上の妥当性の判断基準は,「原子炉立地審査指針」に 従い以下のとおりとする。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(1) 原子炉の周囲は,原子炉からある距離の範囲内は非居住区域であるこ		
	と。		
	「ある距離の範囲」を判断するためのめやすとして、「重大事故」の		
	場合について次の線量を用いる。		
	甲状腺(小児)に対して 1.5 Sv		
	全 身 に対して 0.25 Sv		
	(2) 原子炉からある距離の範囲内であって,非居住区域の外側の地帯は,		
	低人口地帯であること。		
	「ある距離の範囲」を判断するためのめやすとして、「仮想事故」の		
	場合について次の線量を用いる。		
	甲状腺(成人)に対して 3 Sv		
	全 身 に対して 0.25 Sv		
	(3) 原子炉敷地は、人口密集地帯からある距離だけ離れていること。		
	「ある距離だけ離れていること」を判断するためのめやすとして,		
	「仮想事故」の場合における全身線量の積算値に対して2万人Svを参考		
	とする。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	1.2 解析に当たって考慮する事項		
	1.2.1 解析に当たって考慮する範囲		
	想定された事象の解析を行うに当たっては、異常状態の発生前の状態と		
	して,本原子炉施設の通常運転範囲及び運転期間の全域について考慮し,		
	サイクル期間中の炉心燃焼度変化、燃料交換等による長期的な変動及び運		
	転中予想される異なった運転モードを考慮して、判断基準に照らして最も		
	厳しくなる初期状態を選定する。		
	「運転時の異常な過渡変化」の解析については、通常運転時の熱的制限		
	値を定める観点より、「炉心内の反応度又は出力分布の異常な変化」を除く		
	解析では、核特性及び燃料棒機械特性等について解析結果を厳しめに与え		
	る条件を設定する9×9燃料(A型)及び9×9燃料(B型)の混在炉心		
	を考慮した評価を行う。「炉心内の反応度又は出力分布の異常な変化」の解		
	析では、9×9燃料(A型)及び9×9燃料(B型)の熱水力特性がほぼ	◇ 比較表 P.51 および P.120 参照	
	同じであり、また、炉心全体及び局所的な核的特性が混在炉心ゆえに厳し		
	くなることはないと考えられるため、代表的に9×9燃料(A型)のみ及		
	び9×9燃料(B型)のみで構成された炉心について,解析条件を厳しく		
	与え,評価を行う ⁽¹⁾ 。「事故」については,9×9燃料(A型)及び9×		
	9燃料(B型)の熱水力特性がほぼ同じであり、また、炉心全体及び局所		
	的な核的特性が混在炉心ゆえに厳しくなることはないと考えられるため、		
	代表的に9×9燃料(A型)のみ及び9×9燃料(B型)のみで構成され		
	た炉心について、解析条件を厳しく与え、評価を行う(1)。ただし、		
	燃料集合体の落下については、評価結果が厳しくなる燃料の組合せを考慮		
	した評価を行う。		
	また、解析は、原則として事象が収束し、支障なく冷態停止に至ること		
	ができることが合理的に推定できる時点までとする。		
	(1) 想定された事象に対処するための安全機能のうち、解析に当たって		
	考慮するものは、原則として「里要度分類番雀指針」において定めるMS		
	- 1に属するもの及びMS-2に属するものによる機能とする。ににし、		
	MS-3に属するものであつても、多単性を備えた設計としていること寺、 伝統歴が「ハズキストのについては、これた会せて、叙托に来た、て老虎		
	信頼性が十分であるものについては、これをさめる。 脾机に当たつて考慮 ナスウム機能な第1.9 1ませび第1.9 9まに三十		
	りの女王機肥を弗1,4-1衣及い弗1,4-4衣に小り。		

頁		平成 21 年 12 月設	置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類十	第 1.2-1	表 解析において影響緩和の	Dため考慮する主要な安全機能	(iii) 事故に対処するために必要な施設	
図表:		(運転時の異常な)	過渡変化)	<u>事故に対処するために必要な施設の安全機能のうち、解析に当た</u>	
P10-1-23	分類	機能	構築物,系統又は機器	<u>って考慮するものを以下に示す。</u> 知知に以及れてお店に示す。	
		原子炉の緊急停止機能	制御棒及び制御棒駆動系	<u>a. 解析に当たって考慮する主要な安全機能 (MS-1)</u> (a) 原子炉の緊急停止機能	
			(スクラム機能)	制御棒及び制御棒駆動系(スクラム機能)	
	M S - 1	未臨界維持機能	(未臨界維持機能)		l
		工学的安全施設及び原子炉停 止系への作動信号の発生機能	安全保護系 (原子炉緊急停止系作動回路,工 学的安全施設作動回路)	制御棒及び制御棒駆動系(木臨外維持機能) <u>(c)</u> 工学的安全施設及び原子炉停止系への作動信号の発生機能 安全保護系(原子炉緊急停止系作動回路,工学的安全施設作	
		原子炉圧力の上昇の緩和機能	主蒸気逃がし安全弁(逃がし弁機能) タービンバイパス系	 動回路) <u>b. 解析に当たって考慮する主要な安全機能(MS-3)</u> 	l
	M S — 3	出力上昇の抑制機能	原子炉再循環流量制御系 (ポンプトリップ機能) 原子炉核計装系 (起動領域モニタ(原子炉周期短 制御棒引抜阻止機能)及び制御棒 引抜監視装置)	 (a) 原子炉圧力の上昇の緩和機能 主蒸気逃がし安全弁(逃がし弁機能) タービンバイパス系 (b) 出力上昇の抑制機能 原子炉再循環流量制御系(ポンプトリップ機能) 原子炬核計装系(起動領域モニタ(原子炬周期短制御祷引抜) 	
		原子炉冷却材再循環流量の	原子炉冷却材再循環ポンプMGセ	阻止機能)及び制御棒引抜監視装置)	
		低下の緩和機能	ット	(c) 原子炉冷却材再循環流量の低下の緩和機能	
	(2) 解に ひん (2) が (3) (3) (4) の た (4) の れ (4) 0 れ (4)	当たっては,想定された事象 な系統,機器について,原子 基本的安全機能別に,解析の 定した解析を行う。この場合 について,また,長期間にお 単一故障を考える。ただし, 後も引き続き動作する機器に 静的安全機能を達成できるよう 支障のない時間内に除去又は 確率が十分低い場合において 対処するために必要な運転員 を考慮する。 護系の動作を期待する場合に 種類及び信号発生時点を明 ,その動作が解析の結果に有 る。	象に加えて、「事故」に対処するた 一炉停止、炉心冷却及び放射能閉じ の結果を最も厳しくする機器の単一 、事象発生後短期間にわたっては のたっては動的機器又は静的機器に 事象発生前から動作しており、か こついては、原則として故障を仮定 を仮定したときにこれを含む系 に設計されている場合、その故障 は、故障を仮定しない。 の手動操作については、適切な時 おいては、安全保護系作動のため 確にする。安全保護系以外の系で 意の影響を与えるものについては、	原子炉冷却材再循環ポンプMGセット	

頁 頁 平成 21 4	年12月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
(5) 「事故」の解析に当たっ⁻	て、工学的安全施設の動作を期待する場合に		
おいては、外部電源が利用で	できない場合も考慮する。		
(6) 原子炉のスクラムの効果	を期待する場合においては、スクラムを生じ		
させる信号の種類を明確にし	た上,適切なスクラム遅れ時間を考慮し,か		
つ、当該事象の条件において	最大反応度価値を有する制御棒(同一水圧制		
御ユニットに属する1組又に	は1本)が,全引抜位置にあるものとして停止		
効果を考慮する。			
1.2.3 解析に使用するモデル及	びパラメータ		
解析に当たって使用するモ	デル及びパラメータは、評価の結果が厳しく		
なるように選定する。ただし,	これらは評価目的の範囲内で合理的なもの		
を用いる。なお,パラメータ)	に不確定因子が考えられる場合には、適切な		
安全余裕を見込んで解析を行う	õ.		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	1.3 解析に使用する計算プログラム		
	「運転時の異常な過渡変化」の解析及び「事故」の解析に使用する計算		
	プログラム(以下「コード」という。)の一覧表をそれぞれ第 1.3-1 表及		
	び第1.3-2表に示す。表中のコードの概要を以下に記載する。		
	(1) REDY ⁽²⁾⁽³⁾ 及びBANDIX ⁽⁴⁾		
	プラント動特性解析コードREDY及びBANDIXは、プラント安		
	定性,「運転時の異常な過渡変化」及び原子炉冷却材流量の喪失を解析		
	するコードである。本コードは、炉心、原子炉圧力容器(以下「圧力容		
	器」という。), 圧力容器内部構造物, 原子炉冷却材再循環系(以下「再		
	循環系」という。),主蒸気管,タービン系等のプラント全体を模擬し,		
	6 群の遅発中性子及び反応度フィードバックを含む一点近似動特性,燃		
	料棒の熱的動特性及び冷却材の熱水力学的挙動を計算する。		
	本コードの入力は、原子炉出力、炉心入口流量(以下「炉心流量」と		
	いう。)等の初期条件,原子炉,主蒸気管等のデータ,核データ,燃料		
	棒データ、各種制御系データ等であり、出力として、原子炉出力、原子		
	炉圧力,炉心流量,原子炉水位等の時間変化が求められる。		
	(2) $SCAT^{(2)}(3)(5)(6)$ 及びFRANCESCA ⁽⁷⁾		
	単チャンネル熱水力解析コードSCAT及びFRANCESCAは,		
	「運転時の異常な過渡変化」及び「事故」における燃料の熱的余裕を解		
	析するコードである。本コードは、単一チャンネルを模擬し、これを軸		
	方向一次元に多ノード分割する。各ノードについて、燃料棒には半径方		
	向だけの熱伝導方程式を適用して冷却材への熱伝達を計算し、チャンネ		
	ル内冷却材には、質量、運動量及びエネルギ保存則を適用して冷却材の		
	熱水力学的挙動を計算する。		
	本コードの入力は,燃料集合体の幾何学的形状,軸方向出力分布等の炉		
	心データ,燃料集合体出力,チャンネル入口流量等の初期条件,燃料集合		
	体出力,チャンネル入口流量等の過渡変化のデータ等であり,出力として,		
	沸騰遷移相関式に基づく限界出力比(CPR),各ノードでの冷却材流量,		
	クオリティ等の時間変化が求められる。		
	(3) 三次元沸騰水型原子炉模擬計算コード ⁽⁸⁾⁽⁹⁾		
	三次元沸騰水型原子炉模擬計算コードは、沸騰水型原子炉の炉心核熱		
	水力特性を解析するコードで、三次元の拡散方程式により原子炉全体の		
	出力分布や実効増倍率を計算する。さらに、その出力分布を基に熱的評		
	価計算及び燃焼計算を行う。本コードの用途は多岐にわたり、制御棒運		
	用計画,燃焼度管理,原子炉停止余裕の計算等に使用される。出力運転		
	時の計算では、ボイドの発生によるボイド分布を考慮した出力分布とな		
	るよう収束計算を行う。		
	本コードの入力は、炉心の幾何学的形状、単位燃料集合体核計算で得		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	られた核定数,熱水力計算に必要なデータ,制御棒パターン,炉心熱出		
	力等の炉心状態を表すデータであり、出力として炉心出力分布、ボイド		
	分布,燃焼度分布,実効増倍率等が求められる。		
	(4) ISCOR ⁽¹⁰⁾ 及びTHRP ⁽¹¹⁾		
	炉心熱水力解析コードISCOR及びTHRPは、定常状態における		
	炉心内の熱水力特性を解析するコードであり、炉心内の全燃料集合体を		
	幾つかにタイプ分けし、各タイプごと及び炉心全体の熱水力特性を計算		
	する。		
	具体的には、与えられた出力分布を用いて、各燃料集合体への冷却材		
	流量配分を、燃料集合体入口と出口間の圧力差が全燃料集合体において		
	等しくなるように繰り返し計算により求め、熱的余裕、炉心圧力損失等		
	の熱水力特性を計算する。		
	本コードの入力は, 炉心熱出力, 炉心流量等の炉心状態を表すデータ,		
	出力分布に関するデータ、燃料集合体の幾何学的形状及びその他熱水力		
	計算に必要なデータであり、出力として限界出力比、圧力損失、ボイド		
	分布等が求められる。		
	(5) APEX ⁽¹²⁾ 及びEUREKA-N ⁽¹³⁾		
	反応度投入事象解析コードAPEX及びEUREKA-Nは,原		
	子炉起動時における制御棒の異常な引き抜き及び制御棒落下を解		
	析するコードである。本コードは,熱的現象を断熱としており,炉		
	心平均出力の過渡変化を炉心一点近似による動特性方程式で表し,		
	出力の炉心空間分布をAPEXでは二次元(R-Ζ)拡散方程式で,		
	EUREKA-Nでは三次元(X-Y-Ζ)拡散方程式で表す。炉		
	心各部分のエンタルピの上昇は、出力分布に比例するものとし、A		
	PEXでは炉心平均エンタルピが,EUREKA-Nでは炉心最大エ		
	ンタルピがある程度上昇する間(エンタルピステップ)は、出力分布		
	は一定としている。また、投入反応度としては、制御棒価値、スクラム		
	反応度及びドップラ反応度を考慮するが,このドップラ反応度は,AP		
	EXでは二次元拡散計算による出力分布を,EUREKA-Nでは三次		
	元拡散計算による出力分布を考慮して求められる。		
	本コードの入力は、炉心の幾何学的形状、各種中性子断面積、拡散係		
	数、ドップラ係数、炉心動特性パラメータ等の核データ、制御棒反応度		
	の時間変化等であり、出力として、中性子束分布、エンタルピ分布及び		
	炉心平均出力の時間変化が求められる。		
	(6) $LAMB^{(5)}(6)$ 及びLABEL ⁽⁷⁾		
	短期間熱水力過渡変化解析コードLAMB及びLABELは、短期間		
	の原子炉内熱水力過渡変化を解析するコードであり、圧力容器に接続す		
	る各種一次系配管の破断事故を取り扱うことができる。本コードは、圧		
	カ容器及び再循環系を7ノードに分割し,質量,運動量及びエネルギ保		

頁	平成 21 年 12 月設置許可申請	設置法附則第 23 条第4項に基づく提出書(補正後)	備考
	存則に基づく方程式を解くことにより、定常状態から事故発生後数十秒		
	間の各ノード内冷却材の質量、圧力及びエンタルピ、ノード間の冷却材		
	流量等の時間変化を計算する。炉心流量の変化としては、破断直後から		
	の原子炉冷却材再循環ポンプ(以下「再循環ポンプ」という。)のコー		
	ストダウンによる流量の変化等を詳細に計算することができる。		
	本コードの入力は、原子炉出力、炉心流量等の初期条件、原子炉の幾		
	何学的形状及び水力学的諸量、燃料集合体及び炉心に関するデータ、プ		
	ラント過渡特性パラメータ、再循環ポンプ特性、想定破断の位置及び破		
	断面積等であり、出力として、ブローダウン中の燃料棒の限界出力過渡		
	変化解析に使用する原子炉圧力、炉心流量及び炉心入口エンタルピの時		
	間変化、破断口からの流出流量等が求められる。		
	(7) SAFER $^{(14)}$ 及びSALUTE $^{(7)}$		
	長期間熱水力過渡変化解析コードSAFER及びSALUTE		
	は,長期間の原子炉内熱水力過渡変化を解析するコードであり,圧		
	力容器に接続する各種一次系配管の破断事故及び原子炉冷却材流		
	量の喪失を取り扱うことができる。本コードは,原子炉内を9ノー		
	ドに分割し,原子炉圧力及び各ノードの水位変化を計算する。また,		
	各種の非常用炉心冷却系(以下「ECCS」という。)の性能特性		
	を入力することにより、それらの性能を評価することができる。炉		
	内冷却材量の評価に当たっては上部タイプレート、炉心入口オリフ		
	ィス等での気液対向流制限現象(以下「CCFL」という。)及び炉		
	心上部プレナムにおけるサブクール域の局在化により冷却材が炉		
	心下部プレナムに落下する現象(CCFLブレークダウン)を考慮		
	することができる。		
	また,本コードでは,平均出力燃料集合体及び高出力燃料集合体		
	に対して燃料ペレット,燃料被覆管等の温度計算を行う。燃料被覆		
	管の温度計算においては, その冷却状態に応じた熱伝達係数を考慮		
	でき,またSAFERでは燃料棒間の輻射及び燃料棒とチャンネル		
	ボックスの輻射を, SALUTEでは燃料棒間の輻射を考慮するこ		
	とができる。		
	また,燃料被覆管と冷却水又は水蒸気との化学反応(以下「ジル		
	コニウム-水反応」という。)をBaker-Justの式によって計算し,		
	表面の酸化量を求める。さらに, 燃料棒内の圧力を計算することに		
	よって, 燃料被覆管のふくれと破裂の有無を評価し, 破裂が起きた		
	場合には,燃料被覆管の内面に対してもジルコニウム-水反応を考		
	慮する。		
	本コードの入力は、原子炉出力、原子炉圧力等の初期条件、原子炉の		
	幾何学的形状及び水力学的諸量,燃料集合体及び炉心に関するデータ,		
	プラント過渡特性パラメータ, ECCSの特性, 想定破断の位置及び破		

頁	平成 21 年 12 月設置許可申請	設置法附則第 23 条第4項に基づく提出書(補正後)	備考
	断面積等であり、出力として、原子炉圧力、原子炉水位、燃料被覆管最		
	高温度、燃料被覆管酸化量等が求められる。		
	(8) 短期間格納容器圧力応答解析コード ⁽¹⁵⁾⁽¹⁶⁾		
	短期間格納容器圧力応答解析コードは、LOCA直後の冷却材ブロー		
	ダウン期間中の格納容器内圧力及び温度の変化を解析するコードであ		
	る。本コードは、格納容器をドライウェルとサプレッションチェンバの		
	2ノードに分割し、各ノードについて質量及びエネルギ保存則に基づく		
	方程式、運動方程式並びに状態方程式を解くことにより、格納容器内圧		
	力及び温度を計算する。なお,格納容器内構造物との間の熱の授受は,		
	保守的に考慮していない。		
	本コードの入力は,格納容器内各部の圧力,温度,湿度等の初期条件,		
	自由空間体積、流路面積及び流路抵抗並びに一次冷却系からの質量流量		
	及びエネルギ放出量であり、出力として格納容器内圧力及び温度の時間		
	変化が求められる。		
	(9) 長期間格納容器圧力応答解析コード ⁽¹⁶⁾		
	長期間格納容器圧力応答解析コードは、LOCA後冷却材ブローダウ		
	ン期間以降の格納容器スプレイ冷却系作動期間中における長期間格納容		
	器内圧力及び温度の変化を解析するコードである。本コードは、格納容		
	器をドライウェルとサプレッションチェンバの2ノードに分割し、各ノ		
	ードについて、質量及びエネルギ保存則に基づく方程式、運動方程式並		
	びに状態方程式を解くことにより,格納容器内圧力及び温度を計算する。		
	また、ECCSモデル、格納容器スプレイモデル及び熱交換器モデルが		
	組み込まれている。		
	本コードの入力は、格納容器内各部の圧力、温度、湿度等の初期		
	条件,自由空間体積,流路面積及び流路抵抗のほか,ECCS流量,		
	格納容器スプレイ流量,熱交換器容量,海水温度等であり,出力と		
	して、格納容器内圧力及び温度の時間変化が求められる。		
	(10) 可燃性ガス濃度解析コード (17) (18) (19)		
	可燃性ガス濃度解析コードは、LOCA後の格納容器内の可燃性ガス		
	濃度を解析するコードである。本コードは、格納容器をドライウェルと		
	サプレッションチェンバの2ノードに分割し,各ノードについて,水素		
	及び酸素の濃度変化を質量バランスの式により計算する。各ノード間の		
	ガスの移動は、圧力バランスの式により求める。水素及び酸素の発生源		
	としては、ジルコニウムー水反応(水素)及び水の放射線分解(水素及		
	び酸素)を考慮する。また、可燃性ガス濃度制御系のモデルが組み込ま		
	れている。		
	本コードの入力は,格納容器内各部の圧力,温度,湿度等の初期条件,		
	自由空間体積,流路面積及び流路抵抗のほか,ジルコニウムー水反応割		
	合、水の放射線分解率並びに可燃性ガス濃度制御系容量及び作動時間で		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	あり、出力として、格納容器内の水素及び酸素濃度の時間変化が求めら		
	れる。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	1.4 参考文献		
	(1) 「沸騰水型原子力発電所 混在炉心を考慮した安全評価手法」		
	(東北電力株式会社,東京電力株式会社,中部電力株式会社,北陸電力		
	株式会社,中国電力株式会社,日本原子力発電株式会社,株式会社東芝,		
	株式会社日立製作所,原子燃料工業株式会社,平成10年4月)		
	(2)「沸騰水型原子力発電所 プラント動特性解析手法について」		
	(株式会社日立製作所,HLR-014 訂 2, 昭和 63 年 3 月)		
	(3) Linford, R. B., "Analytical Methods of Plant Transient Evaluations		
	for the General Electric Boiling Water Reactor", NEDO-10802,		
	February 1973.		
	(4) 「BWRプラント動特性解析手法について」		
	(原子燃料工業株式会社, NLR-07, 平成2年5月)		
	(5) "General Electric Company Analytical Model for Loss-of-Coolant		
	Analysis in accordance with 10CFR50 Appendix K", NEDO-20566,		
	January 1976.		
	(6) 「沸騰水型原子力発電所 非常用炉心冷却系(ECCS)性能解析モ		
	デルについて」		
	(株式会社日立製作所,HLR-018 訂3, 平成10年5月)		
	(7) 「BWRの非常用炉心冷却系解析手法について」		
	(原子燃料工業株式会社, NLR-010改訂1, 平成10年5月)		
	(8) 「沸騰水形原子力発電所 3次元核熱水力計算手法について」		
	(株式会社日立製作所,HLR-006 訂1, 昭和59年9月)		
	(9) 「BWRの三次元核熱水力設計計算手法について」		
	(原子燃料工業株式会社, NLR-03, 平成6年4月)		
	(10) 「沸騰水形原子力発電所 原子炉の熱設計手法について」		
	(株式会社日立製作所,HLR-008,昭和52年4月)		
	(11) 「BWRの熱水力設計計算手法について」		
	(原子燃料工業株式会社, NLR-02, 平成2年5月)		
	(12) 「沸騰水型原子力発電所 反応度投入事象解析手法について」		
	(株式会社日立製作所, HLR-012 訂3, 平成11年2月)		
	(13) 「BWRの反応度投入事象解析手法について」		
	(原子燃料工業株式会社, NLR-09, 平成6年4月)		
	(14) 「沸騰水型原子力発電所 非常用炉心冷却系(ECCS)の新性能		
	評価手法について」		
	(株式会社日立製作所, HLR-032 訂3, 平成10年5月)		
	(15) Bilanin, W. J., "The General Electric Mark III Pressure Suppression		
	Containment System Analytical Model", NEDO-20533, June 1974.		
	(16) 「沸騰水型原子力発電所」原子炉格納容器過渡変化の解析モデルにつ		
	いて」		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(株式会社日立製作所, HLR-016 訂1, 昭和63年3月)		
	(17) Wilson, R. M. and Slifer, B. C., "Hydrogen Generation and The		
	General Electric Boiling Water Reactor", NEDO-10723, February 1973.		
	(18) 「沸騰水型原子力発電所 可燃性ガス濃度制御系について」		
	(株式会社日立製作所,HLR-019 訂3,昭和63年4月)		
	(19) 「BWRの可燃性ガス濃度解析手法について」		
	(原子燃料工業株式会社,NLR-17, 平成8年12月)		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2. 運転時の異常な過渡変化の解析		
	2.1 序		
	本原子炉施設の安全設計の基本方針の妥当性を確認するため、原子炉施		
	設において発生する可能性のある「運転時の異常な過渡変化」に対して,		
	その発生原因と対策及び保護機能を説明し、過渡変化の解析と結果の評価		
	を行い、判断基準への適合性を検討する。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	 2.2 解析方法及び解析条件 2.2.1 解析方法 解析方法は第1.3-1表に示すとおり、主に以下の計算コードを用いる。 (1) プラント全体の過渡応答 「1.3 解析に使用する計算プログラム」に述べたプラント動特性解析コード(REDY⁽¹⁾及びBANDIX⁽²⁾) (2) 過渡時のMCPR解析 「1.3 解析に使用する計算プログラム」に述べた単チャンネル熱水 カ解析コード(SCAT⁽¹⁾及びFRANCESCA⁽³⁾)又は炉心熱水 カ解析コード(ISCOR⁽⁴⁾及びTHRP⁽⁵⁾) 		
	 2.2.2 解析条件 (1) 原子炉の初期条件については、特に断らない限り以下のとおりとする。 圧力上昇率等を有意に厳しく見積もるため原子炉熱出力は4,005MW(定 格出力の約102%)、<u>炉心流量は47.0×10³t/h(定格流量の90%)を仮定</u> した。また、MCPRは1.22、燃料棒最大線出力密度(以下「最大線出 力密度」という。)は44.0kW/mを仮定している。<u>再循環ポンプ</u>は通常運転 時の10台運転を仮定している。 	 (2) 解析条件 (i) 原子炉の初期条件等 a. 原子炉の初期条件については,特に断らない限り以下のとおりとする。圧力上昇率等を有意に厳しく見積もるため原子炉熱出力は4,005MW(定格出力の約102%),炉心入口流量(以下「炉心流量」という。)は47.0×10³t/h(定格流量の90%)を仮定した。また,MCPRは1.22,燃料棒最大線出力密度(以下「最大線出力密度」という。)は44.0kW/mを仮定している。原子炉冷却材再循環ポンプ(以下「再循環ポンプ」という。)は通常運転時の10台運転を仮定している。 	記載の適正化 記載の適正化
	 (2) 原子炉再循環流量制御系(以下「再循環流量制御系」という。)については、特に断らない限り自動運転モードとする。ただし、手動運転モードの場合に結果が有意に厳しくなるものについては手動運転モードを仮定する。 (3) 作動を要求される安全機能の単一故障については、特に断らない限り安全保護系の単一故障を仮定するが、多重性を備えた設計であるため、その安全保護機能は維持できる。 	 <u>b.</u>原子炉再循環流量制御系(以下「再循環流量制御系」という。) については、特に断らない限り自動運転モードとする。ただし、 手動運転モードの場合に結果が有意に厳しくなるものについては 手動運転モードを仮定する。 <u>c.</u>作動を要求される安全機能の単一故障については、特に断らな い限り安全保護系の単一故障を仮定するが、多重性を備えた設計 であるため、その安全保護機能は維持できる。 	

Ĩ	平成 21 年 12 月	設置許可申請		设置法附則第23条第4項に基	基づく提出書(補正後)	偱
<u>(4)</u> Z	の他の解析条件	いてナわタルナい下にニナ		その他の解析条件	に用いてナカタルナルエレニナ	
女	生体硬ポの故た尽守,胜彻に用	いる主な条件を以下に小り。	2	て主体護系の政と思寺, 脾例	に用いる主な条件を以下に小り。	
	項目	数 値 等				
<u>(1)</u> 初期 場合	期運転条件(定格出力の約 102%の 合)		<u>(a)</u>	初期運転条件(定格出力の	約102%の場合)	
a . b .	原子炉熱出力 最大熱流束	4,005MW				
		9×9燃料(A型)				
		1,250kW/m² [44.0kW/m]				
		9×9燃料 (B型)				
		1,270kW/m² [44.0kW/m]				
с.	MCPR	1.22				
d .	炉心流量	47. $0 \times 10^{3} t/h$				
е.	原子炉給水温度	217°C		原子炉給水温度	217°C	
f .	原子炉圧力	7.17MPa[gage]		原子炉圧力	7.17MPa[gage]	
	(圧力容器ドーム部)			(圧力容器ドーム部)		
g.	主蒸気流量	$7.82 \times 10^{3} t/h$		主蒸気流量	$7.82 \times 10^{3} t/h$	
<u>(2)</u> 安全	全保護系設定值注1)		<u>(b)</u>	安全保護系設定値		
a.	原子炉圧力高スクラム ^{注2)}	7.52MPa[gage] (0.55 秒) ^{注3)}		原子炉圧力高スクラム	7.52MPa[gage]	
b.	原子炉水位低スクラム	ドライヤスカート下端から注4)	1		(スクラム遅れ時間0.55秒)	
		+61 cm(1.05 秒)(レベル 3)		原子炉水位低スクラム	ドライヤスカート下端から+61cm	
С.	- 中性子東高スクラム				(スクラム遅れ時間1.05秒)	
	出力領域				(レベル3)	
	中性子束として	定格出力の102%の120%(0.09秒)		中性子束高スクラム(出力	領域)	
	然 (相 ヨ) として	<u> </u>		中性子束として	定格出力の約102%の120%	
α.	- 尿丁炉同 <u>期</u> 超ヘクノム - 主義与阿鄭会問マクラム	尿丁炉同期 10 $ (0.20 (0.06 $			(スクラム遅れ時間0.09秒)	
e.	主衆スI隔離井肉ヘクラム 主装与止め会盟マクラム	90%不下口一夕位直 $(0.06 秒)$		熱流束(相当)として	第1図	
¹			-		(スクラム遅れ時間0.09秒)	
				原子炉周期短スクラム	原子炉周期10秒	
					(スクラム遅れ時間0.20秒)	
				主蒸気隔離弁閉スクラム	90%ストローク位置	
					(スクラム遅れ時間0.06秒)	
				主蒸気止め弁閉スクラム	90%ストローク位置	
					(スクラム遅れ時間0.06秒)	

頁	平成 21 年 12 月]設置許可申請	設置法附則第23条第4項に	基づく提出書(補正後)	備考
	項 目 (3) その他 a. 主蒸気隔離弁閉止時間 b. 主蒸気隔離弁閉止時間 d. 蒸気加減弁閉止時間 e. タービンバイパス弁容量 f. スクラム反応度曲線 g. スクラム時挿入時間 ^{注5)} h. 減速材ボイド係数 ^{注6)} i. ドップラ係数 ^{注6)} j. 原子炉水位高(タービントリッ プ)設定点 k. 原子炉水位低 (原子炉冷却材再循環ポンプ5 台トリップ)設定点 (原子炉冷却材再循環ポンプM Gセット1台トリップ)設定点 1. 主蒸気逃がし安全弁設定点 ^{注1)}	数値等 3.秒 第2.2-2図 0.1秒 0.075秒 定格蒸気流量の33% 添付書類八の第3.4.1-2図 全ストロークの60%で1.71秒 全ストロークの100%で3.70秒 添付書類八の第3.4.1-3図(1) ドライヤスカート下端から+165cm (レベル8) ドライヤスカート下端から+61cm (レベル8) ドライヤスカート下端から+61cm (レベル2) 第1段:7.66MPa[gage]×1個 第2段:7.73MPa[gage]×1個 第3段:7.80MPa[gage]×4個 第4段:7.87MPa[gage]×4個 第4段:7.87MPa[gage]×3個 第6段:7.94MPa[gage]×3個 第6段:8.01MPa[gage]×3個	(c) その他 主蒸気隔離弁閉止時間 蒸気加減弁閉止時間 タービンバイパス弁容量 スクラム反応度曲線 スクラム時挿入時間 比較表 P. 22 参照	3秒 0.1秒 0.075秒 定格蒸気流量の33% <u>第2図</u> 全ストロークの60%で1.71秒 全ストロークの100%で3.70秒	
	注1)実際の設定値は,添付書類 の段階で決定される。 注2)実際の設定点から設定誤差 の原子炉圧力と定格出力運 0.1MPa 高くとっている。 注3)安全保護系設定値の() 注4)ドライヤスカート下端(原子 は通常水位から-118cmであ 注5)スクラム時挿入時間の設 60%及び100%挿入で各々1.4 転時の異常な過渡変化」の解決	⑤八の第7.1−1表に基づき,詳細設計 ⑤を考慮し1%高目にとり,更に(1)f. 転時の原子炉圧力の差分に相当する 内の時間は、スクラム遅れ時間を示す。 子炉圧力容器零レベルより1,224 cm上)る。 計値は、定格圧力時全ストロークの 4秒及び2.80秒以下としているが、「運 析に当たっては制御棒駆動系の原子炉			

頁	平成 21 年 12 月設置許可申請		設置法附則第23条第4項に基づく提出書(補正後)	備考
	 圧力依存性を考慮した値として 3.70秒を用いる。 注6)減速材ボイド係数及びドッセにおいて過渡変化の結果を使用する。 <u>減速材ボイド係数について</u> 多少の変動等を考慮して,ボ 反応度フィードバック効果がす (9×9燃料(A型))の平衡 を,ボイドが増加する過渡変 	て、60%挿入で 1.71 秒、100%挿入で のプラ係数については、それらの組合 最も厳しく評価する燃焼時点の値を使 <u>は、取替炉心を含めた詳細設計での</u> <u>イドが減少する過渡変化に対しては、</u> 大きい <u>添付書類八の第 3.4.1-5 図(1)</u> サイクル末期時点の値の 1.25 倍の値 <u>た</u> 化に対しては反応度フィードバック	<u>減速材ボイド係数(※)</u> <u>ボイドが減少する過渡変化に対しては,取替炉心を含めた</u> <u>詳細設計での多少の変動等を考慮して,</u> 反応度フィードバ ック効果が大きい9×9燃料(A型)の平衡サイクル末期 時点の値の1.25倍の値を <u>用いる。</u> ボイドが増加する過渡変 化に対しては反応度フィードバック効果が小さい <u>9×9燃</u> <u>料(A型)</u> の第1サイクル初期時点の値の0.9倍の値を用いる。	代表的数値を用いる解 析条件へ注記を追加
	効果が小さい <u>同図</u> の第1サイク る。また,プラント動特性解構 <u>添付書類八の第3.4.1-3図(1</u> 倍の値を用いる。 注7)実際の逃がし弁機能設定点 の多少の変更等を考慮して0.1	クル初期時点の値の 0.9 倍の値を用い 所コードで使用する <u>ドップラ係数は,</u> <u>)</u> の燃焼度 12,900MWd/t 時点の値の 0.9 気から,設定誤差 1 %及び詳細設計で 15MPa 高くとっている。	<u>ドップラ係数(※)</u> <u>第1サイクル</u> の燃焼度12,900MWd/t時点の値の0.9倍の値を用 いる。	代表的数値を用いる解 析条件へ注記を追加
添付書類十 再掲: P.10-2-5	 項 目 j.原子炉水位高(タービントリップ)設定点 k.原子炉水位低 (原子炉冷却材再循環ポンプ5 台トリップ)設定点 (原子炉冷却材再循環ポンプM Gセット1台トリップ)設定点 1.主蒸気逃がし安全弁設定点^{注7)} 	数値等 ドライヤスカート下端から+165cm (レベル8) ドライヤスカート下端から+61cm (レベル3) ドライヤスカート下端から-59cm (レベル2) 第1段:7.66MPa[gage]×1個 第2段:7.73MPa[gage]×1個 第3段:7.80MPa[gage]×4個 第4段:7.87MPa[gage]×4個 第5段:7.94MPa[gage]×3個 第6段:8.01MPa[gage]×3個	原子炉水位高(タービントリップ)設定点 ドライヤスカート下端から+165cm (レベル8) 原子炉水位低(原子炉冷却材再循環ポンプ5台トリップ)設 定点 ドライヤスカート下端から+61cm (レベル3) (原子炉冷却材再循環ポンプMGセット1台ト リップ)設定点 ドライヤスカート下端から-59cm (レベル2) 主蒸気逃がし安全弁設定点 第1段:7.66MPa[gage]×1個 第0時、7.70m []]×1 個	
i			第2段:7.73MPa[gage]×1個 第3段:7.80MPa[gage]×4個 第4段:7.87MPa[gage]×4個 第5段:7.94MPa[gage]×3個 第6段:8.01MPa[gage]×3個	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2.3 過渡解析		
	過渡解析の各項目の記述の構成は、以下のようになっている。		
	(1) 原 因		
	(2) 対策及び保護機能		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	b. 解析結果		
	(4) 判断基準への適合性の検討		
	判御捧引き抜きの過渡亦化け、他の一郎の過渡亦化とけ解析支法が思わ		
	前仰律力さ扱さの過渡変化は,他の一般の過渡変化とは脾竹力伝が異な スため 個別に解析方法を記述している		
	かお (2)の対策及び保護機能のうち 沸騰水型 原子 に 固有に 備わっ		
	ている最も特徴的な角の減速材ボイド係数及びドップラ係数に上る過出力		
	に対する自己制御効果は、すべての事象に共通であるため、それが過渡変		
	化に対して特に支配的な場合を除いて、記述は省略している。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
		(ii) 各評価事象の解析に当たって考慮する解析条件	
		その他,各評価事象の解析に当たって考慮する主要な安全機能に	
	2.3.1 炉心内の反応度又は出力分布の異常な変化	a. 炉心内の反応度又は出力分布の異常な変化	
	<u>2.3.1.1</u> 原子炉起動時における制御棒の異常な引き抜き	(a) 原子炉起動時における制御棒の異常な引き抜き	
	(1) 原 因		
	原子炉の起動時に運転員の誤操作等により制御棒が連続的に引き抜か	原子炉の起動時に運転員の誤操作等により制御棒が連続的に	
	れ、原子炉出力が上昇する。	引き抜かれ、原子炉出力が上昇する事象を想定する。	
	(2) 対策及び保護機能		
	a. 起動時に制御棒を引き抜くときは、運転手順に関する規則を定める		
	ことに加えて、制御棒価値ミニマイザ(RWM)により、引抜手順を		
	監視することにより引き抜く制御棒グループの最大反応度価値を		
	0.035Ak以下に抑える。		
	b. 臨界近傍で制御棒を引き抜くときは、1ステップずつ炉周期を確か		
	めながら、引き抜くように運転手順を定める、自動で制御棒を引き抜		
	く場合においても、制御棒制御装置が同様に炉周期を監視し、異常な		
	引き抜きを防止する		
	c 出力の異常上昇け ドップラ効果に上り抑えられる		
	d 記動領域モニタ (SRNM) の原子炉周期短信号 Z は平均出力領域		
	T = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =		
	止し 出力の異常と星を未然に防止する さらに 中間領域における		
	記し, 出外の英帝王弁を不然に防止する。こうに, 一面関係に400 る 記動領域モータ(SRNM)の原子恒周期毎信号又け亚均出力領域モ		
	一方 (Δ PRM) の由性子声直信号に上り 百子恒けスクラムオス		
	(3) 解析方法		
	$(9 \times 9 \end{pmatrix} (A 刑) を生帯」た何心について)$		
	「「一日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日		
	「「「「「「「」」」」「「」」」「「「」」」「「」」「「」」「「」」「「」」		
	次 = 0 + 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3		
	a 遅発中性子は6 群とする		
	b. 投入反応度としては、引抜制御棒価値、スクラム反応度及びドップ		
	ラ反応度のみを考え、即発ガンマ線に上ろ冷却材の温度上昇け無視す		
	c 炉心平均エンタルピがある程度ト昇する間 (エンタルピステップ)		
	の出力分布は一定とする		
	d ドップラ反応度け 二次元批散計質にトス出力分布を考慮して求め	→ 比較表 P 25 参昭	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	られる。	→ 比較表 P.25 参照	
	(9×9燃料(B型)を装荷した炉心について)		
	原子炉起動時における制御棒の異常な引き抜きの解析では、一点近似		
	動特性モデルを用いた計算コード(EUREKA-N)により炉心の平		
	均出力変化及び反応度変化量を求める。		
	炉心の平均出力変化を求める一点近似動特性モアルの特徴は、およそ		
	次のとおりである、''。		
	b. 投入反応度としては、 引抜制御俸価値、 スクフム反応度及のドック		
	フレ応度のみを考え、即発力ンマ線による行却材の温度上昇は悪視す		
	る。		
	C. 炉心取人エンタルヒルめる柱皮上升りる间(エンタルヒスケツ プ)の山丸八女は「安トナス		
	a. トッノノ及応及は, 二次九仏取計昇による山力力相を考慮して求め たれる	└ └ 較表 F: 25 参照	
	(1) 解析条件及び解析結果		
	(4) 府们不已及 ⁽⁾ 府们和未 。 解析冬 <u>件</u>		
	(a) 制御榛引き抜き前の原子恒け臨界状能にあり 出力け定格値の	a) 制御棒引き抜き前の原子恒け臨界状能にあり 出力け定格	
	10^{-8} 原子炬圧力は0 0MPa[gage] 燃料被覆管表面温度及び冷却材	$in 0^{-8}$ 原子炬圧力は0 0MPa[gage] 燃料被覆管表面温度	
	の温度は20℃とする。また、燃料エンタルピの初期値は8kI/kgUO2	及び原子炉冷却材(以下「冷却材」という。)の温度は20℃と	記載の適正化
	である。	する。また、燃料エンタルピの初期値は $8kI/kg \cdot U0_{27}$ ある。	
	(b) 引抜制御棒価値は、制御棒価値ミニマイザで許容される最大反応	b) 引抜制御棒価値は、制御棒価値ミニマイザで許容される最	
	 度価値である0.035Δkとする。引抜制御棒の反応度曲線を第2.3-1		
	図に示す。	線は,原子炉の状態を考慮した値(※)を用いる。	代表的数値を用いる解
	<u>(c)</u> 制御棒は,引抜速度の上限値33mm/sで引き抜かれるとする。	<u>c)</u> 制御棒は,引抜速度の上限値33mm/sで引き抜かれるとする。	析条件へ注記を追記
	(d) 制御棒は,起動領域モニタの原子炉周期短信号(原子炉周期20	<u>d)</u> 制御棒は,起動領域モニタの原子炉周期短信号(原子炉周	
	秒)で引き抜きを阻止されるとする。	期20秒) で引き抜きを阻止されるとする。	
	<u>(e)</u> 起動領域モニタのA, B及びCグループとも引抜制御棒に最も近	<u>e)</u> 起動領域モニタのA, B及びCグループとも引抜制御棒に	
	い検出器が1個ずつバイパス状態にあるとする。	最も近い検出器が1個ずつバイパス状態にあるとする。	
	<u>(f) 解析に使用するスクラム反応度曲線を第2.3-2図に示す。</u>	<u>f) スクラム反応度曲線(以下「スクラム曲線」という。)は,</u>	記載の適正化
		原子炉の状態を考慮した値(※)を用いる。	代表的数値を用いる解
	2.3.1.1 原子炉起動時における制御棒の異常な引き抜き		析条件へ注記を追記
添付書類十	(3) 解析方法		
再提:	(9×9燃料(A型)を装荷した炉心について)		
P. 10−2−8~9	d. ドッブラ反応度は, 二次元拡散計算による出力分布を考慮して	g) ドップラ反応度は、9×9燃料(A型)を装荷した炉心に	
	求められる。	<u>ついて二次元拡散計算による出力分布を考慮して求めた値</u>	
	(9×9燃料(B型)を装何した炉心について)	$(※) を用い、9 \times 9 燃料 (B型) を装備した炉心について二次二世世記 ない トス 出土 ハガナ 老虎 ハイトュー は (い) ユ$	代表的 叙値を用いる解
	a. トッノフ反応度は、二次元払前計算による出刀分布を考慮して + ひとれて	<u>二次元払前計算による出刀分佈を考慮して求めた値(※)を</u>	「が余件へ汪記を追加
	氷められる。	<u>用いる。</u>	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	b. 解析結果		
	(9×9燃料(A型)を装荷した炉心について)		
	解析結果を第2.3-3図(1)に示す。この過渡変化においては、制御		
	棒引き抜き開始から約10秒後に起動領域モニタの原子炉周期短制御棒		
	引抜阻止信号が発生して、制御棒引き抜きが阻止され、投入される反		
	応度は約0.69ドルである。		
	また、制御棒引き抜き開始から約24秒後に起動領域モニタの原子炉		
	周期短信号が発生して、原子炉はスクラムされ、原子炉出力は、定格		
	値の約1.8×10 ⁻⁴ まで上昇するにとどまる。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い、冷態停止状態に移行		
	することができる。		
	(9×9燃料(B型)を装荷した炉心について)		
	解析結果を第2.3-3図(2)に示す。この過渡変化においては、制御		
	棒引き抜き開始から約9秒後に起動領域モニタの原子炉周期短制御棒		
	引抜阻止信号が発生して、制御棒引き抜きが阻止され、投入される反		
	応度は約0.72ドルである。		
	また、制御棒引き抜き開始から約20秒後に起動領域モニタの原子炉		
	周期短信号が発生して、原子炉はスクラムされ、原子炉出力は、定格		
	値の約2.4×10 ⁻⁴ まで上昇するにとどまる。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い、冷能停止状態に移行		
	することができる。		
	(5) 判断基準への適合性の検討		
	本事象に対する判断基準は「1 1 1 3 判断基準」の(3)及び(4)並びに		
	「反応度投入事象評価指針」に示されている「浸水燃料の破裂による衝		
	撃圧力等の発生によっても、原子炉停止能力及び原子炉圧力容器の健全		
	性を損なわないこと」である。		
	投入される反応度は、約0.72ドルにとどまり、反応度投入事象には至		
	らたいことから 原子炉出力の上昇は緩やかとたり 「1 1 1 3 判断基	↓ 比較表 P 52 参昭	
	進しの(3)で防止している燃料エンタルピの増加に伴う燃料の破損け生じ		
	また。 「また」原子炉出力け定格値の約2.4×10 ⁻⁴ までト島するにとどまり		
	1.ス		
		-	
頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
---	--	---	----
	<u>2.3.1.2</u> 出力運転中の制御棒の異常な引き抜き	(b) 出力運転中の制御棒の異常な引き抜き	
	(1) 原 因		
	原子炉の出力運転中に運転員の誤操作等により制御棒が連続的に引き	原子炉の出力運転中に運転員の誤操作等により制御棒が連続	
	抜かれ、原子炉出力が上昇する。	的に引き抜かれ,原子炉出力が上昇する <u>事象を想定する</u> 。	
	(2) 対策及び保護機能		
	a. 制御棒引抜監視装置(RBM)により,引抜制御棒の近傍の出力が,		
	ある一定の出力になれば、制御棒の引き抜きを阻止し、出力の異常上		
	昇を未然に防止する。		
	b. 引抜制御棒の近傍の局部出力領域モニタ(LPRM)から中性子束		
	高の警報を出し、運転員に注意を喚起するようにする。		
	c. 出力運転中に制御棒を引き抜くときは,引抜ステップごとに局所の		
	熱的状態を確認しながら引き抜くよう運転手順を定める。		
	(3) 解析方法		
	本解析は、「1.3 解析に使用する計算プログラム」で述べた三次元沸		
	騰水型原子炉模擬計算コードを用い、各々の制御棒引抜状態における出		
	力分布及び熱的状態を計算する ⁽⁸⁾⁽⁹⁾ 。すべての空間的効果は計算に含		
	まれている。		
	(4) 解析条件及び解析結果		
	a. 解析条件		
	制御棒の操作は、制御棒1本又は制御棒グループごとに行う。制御		
	棒引抜監視装置は、すべての引抜制御棒近傍の出力を監視しているの		
	で、1本引き抜きの場合、監視している検出器数は、複数本の同時引		
	き抜きの場合よりも少ない。 <u>したがって,</u> 最も厳しい結果を与える1	<u>a) 制御棒は,</u> 最も厳しい結果を与える1本引き抜きを仮定する。	
	本引き抜き <u>について解析することとし,以下の状態</u> を仮定する。		
	(a) 引き抜かれる制御棒が完全挿入状態にあるとき,原子炉は通常運	b) 引き抜かれる制御棒が完全挿入状態にあるとき,原子炉は	
	転時の熱的制限値の状態(MCPR及び最大線出力密度は、それぞ	通常運転時の熱的制限値の状態(MCPR及び最大線出力密度	
	れ1.22, 44.0kW/m) にあり, かつ, この状態になっている燃料が	は, それぞれ1.22, 44.0kW/m)にあり, かつ, この状態になっ	
	引抜制御棒の近傍に来るように, 原子炉の状態と制御棒パターンを	ている燃料が引抜制御棒の近傍に来るように、原子炉の状態と	
	設定する。なお、初期出力は定格出力、原子炉圧力は7.07MPa	制御棒パターンを設定する。なお、初期出力は定格出力、原子	
	[gage]とする。	炉圧力は7.07MPa[gage]とする。	
	(b) 制御棒が連続的に引き抜かれた場合,表面熱流束は通常,中性子	<u>c)</u> 制御棒が連続的に引き抜かれた場合,表面熱流束は通常,	
	束よりも遅れて上昇するが,この解析では定常状態を仮定し,表面	中性子束よりも遅れて上昇するが、この解析では定常状態を	
	熱流束は中性子束に対して時間遅れなしに変化しているものとす	仮定し、表面熱流束は中性子束に対して時間遅れなしに変化	
	る。	しているものとする。	
	(c) 制御棒引抜監視装置は事象発生前から動作しており,かつ,発生	<u>d</u>) 制御棒引抜監視装置は事象発生前から動作しており,かつ,	
	後も引き続き動作するため、その動作を考慮する。制御棒引抜監視	発生後も引き続き動作するため、その動作を考慮する。制御	
	装置は、初期定格出力の105%のところで制御棒引抜阻止信号を出	棒引抜監視装置は、初期定格出力の105%のところで制御棒引	
	すとする。	抜阻止信号を出すとする。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
д	(d) 解析は9×9燃料(A型)を装荷した炉心については第1サイク ル初期,9×9燃料(B型)を装荷した炉心については平衡サイク ル初期で行う。なお、サイクル末期では制御棒がほとんど引き抜か れているため、解析結果はサイクル初期のものに包絡される。 (e) 制御棒引抜監視装置の2チャンネル4系列(各チャンネルにつき、 (A+C)系列及び(B+D)系列の2系列)のうち、応答の早い (B+D)系列が2系列ともバイパス状態にあるとする。 さらに、同装置に接続される局部出力領域チェクのうち、引き抜	 e) 解析は9×9燃料(A型)を装荷した炉心については第1 サイクル初期,9×9燃料(B型)を装荷した炉心について は平衡サイクル初期で行う。なお,サイクル末期では制御棒 がほとんど引き抜かれているため,解析結果はサイクル初期 のものに包絡される。 f) 制御棒引抜監視装置の2チャンネル4系列(各チャンネル につき,(A+C)系列及び(B+D)系列の2系列)のうち, 応答の早い(B+D)系列が2系列ともバイパス状態にある とする。 	/用 ~
	かれる制御棒に最も近い2個がバイパス状態にあるとする。	引き抜かれる制御棒に最も近い2個がバイパス状態にあると する。	
	(f) 炉心流量は定格流量の111%とする。	<u>g)</u> 炉心流量は定格流量の111%とする。	
	 b. 解析結果 (9×9燃料(A型)を装荷した炉心について) 制御棒を引き抜いていくと、引抜制御棒近傍の出力が上昇し、制 御棒引抜監視装置がこれを検出して、初期定格出力の105%のところで 制御棒引抜阻止信号が出される。原子炉平均出力、局所の表面熟 流束の変化を第2.3-4図(1)に、また、このときの制御棒引抜監視 装置からの信号の変化を第2.3-5図(1)及び第2.3-6図(1)に示 す。これらの図に示すように、制御棒引抜監視装置自体が最も厳 しいバイパス状態にあっても、制御棒引抜監視装置自体が最も厳 しいバイパス状態にあっても、制御棒は約27%引き抜かれたところ で引き抜きが阻止され、MCPRは1.09にとどまる。また、局所の表 面熟流束の最大値は定格値の約120%になる。 解析結果に示すように事象は収束する。この後、原子炉は定常状態 となるが、制御棒の挿入操作により通常運転に復帰できる。また、必 要があれば、通常の原子炉停止手順に従い、減圧・降温を行い、冷態 停止状態に移行することができる。 (9×9燃料(B型)を装荷した炉心について) 制御棒引き抜いていくと、引抜制御棒近傍の出力が上昇し、制御 棒引抜監視装置がこれを検出して、初期定格出力の105%のところで 制御棒引抜阻止信号が出される。原子炉平均出力、局所の表面熱流束 の変化を第2.3-4図(2)に、また、このときの制御棒引抜監視装置か らの信号の変化を第2.3-5図(2)及び第2.3-6図(2)に示す。これらの 図に示すように、制御棒引抜監視装置自体が最も厳しいバイパス状態 にあっても、制御棒は約34%引き抜かれたところで引き抜きが阻止され、MCPRは1.09にとどまる。また、局所の表面熱流束の最大値は 定格値の約120%になる。 		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	解析結果に示すように事象は収束する。この後、原子炉は定常状態		
	となるが、制御棒の挿入操作により通常運転に復帰できる。また、必		
	要があれば、通常の原子炉停止手順に従い、減圧・降温を行い、冷態		
	停止状態に移行することができる。		
	(5) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1), (2)及び(4)で		
	ある。		
	制御棒引抜監視装置が最も厳しいバイパス状態にあっても、MCPR		
	は1.09にとどまり許容設計限界を下回ることはなく、「1.1.1.3 判断基		
	準」の(1)は満足される。また,局所の表面熱流束の最大値は定格値の約		
	120%であり、1%塑性歪を与えるまでには十分余裕がある。したがって、		
	「1.1.1.3 判断基準」の(2)も満足される。		
	また,原子炉平均出力の上昇は3%程度にとどまり,原子炉圧力の上		
	昇はほとんどなく「1.1.1.3 判断基準」の(4)も満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2.3.2 炉心内の熱発生又は熱除去の異常な変化	<u>b.</u> 炉心内の熱発生又は熱除去の異常な変化	
	<u>2.3.2.1</u> 原子炉冷却材流量の部分喪失	<u>(a)</u> 原子炉冷却材流量の部分喪失	
	(1) 原 因		
	原子炉の出力運転中に,再循環ポンプMGセット発電機の故障等	原子炉の出力運転中に,再循環ポンプMGセット発電機の故	
	により、再循環ポンプ5台の電源が喪失し、炉心流量が減少する。	障等により,再循環ポンプ5台の電源が喪失し,炉心流量が減 少する <u>事象を想定する</u> 。	
	(2) 対策及び保護機能		
	a. 再循環ポンプ10台は,単一の再循環ポンプMGセット発電機の故障		
	等で全台のポンプが同時に停止しないように,5台ずつ2系統の常用		
	高圧母線に接続する。原子炉通常運転中、この母線は発電機側の電源		
	から給電されるが,発電機負荷開閉器が開いた場合にも,500kV送電		
	線側から給電される構成とする。		
	b. 大きな負の減速材ボイド係数により, 原子炉出力が減少する。		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	(a) 再循環ポンプは、初期炉心流量に対応した回転速度にあるものと	<u>a)</u> 再循環ポンプは,初期炉心流量に対応した回転速度にある	
	する。	ものとする。	
	(b) 再循環ボンブ及び同駆動電動機の定格炉心流量に対応する回転速	b) 再循環ボンブ及び同駆動電動機の定格炉心流量に対応する	
	度からの回転速度半減時間の設計値は約0.7秒であるが、本解析で	回転速度からの回転速度半減時間の設計値は約0.7秒である	
	は炉心流量の低下を厳しめに評価するよう10%小さな値(0.62秒)	か、本解析では炉心流量の低下を厳しめに評価するよう10%	
		小さな値(0.62秒)とする。	
	$(9 \times 9 然科 (A空) の評価を1) ための脾机 福未)$ DEDV 及び の の の 子 に たる の 所 が 福未) の た の の 所 が 福未) の た の た の の 所 が 福未) の た の た の た の の た の の た の の た の の た の の た の の の た の の の た の の の た の の の た の の の た の の の た の の の た の の の の の の の の た の の の の の の の た の の の の の の の の の の の の の		
	REDI及びSCAIによる解析福禾を第4.3-7因(1)に小り。 再循環ポンプ5 台がトリップオスことにより 「「「心流景け刍連に減」		
	竹帽塚ホンノ 3 日がドリソノ 9 ることにより, が 1 価重は 1 本 小 1 ボイドが 4 増 オス ボイドの 増加に ト っ て 佰 子 恒 水 位 け ト 見 オ		
	ろが 「 百子 「 水 「 、 、 、 、 、 、 、 、 、 、 、 、 、		
	いので原子炉はスクラムしたい		
	第2.3-7図(1)に示すように、5台の再循環ポンプがトリップする		
	と正常側のポンプの流路抵抗は減少し、正常側ポンプの流量は約		
	146%に増加する。トリップしたポンプの流量は約1.1秒で逆流し、炉		
	心流量は定格流量の約57%となる。		
	中性子束及び表面熱流束は初期値を超えない。MCPRの変化(以		
	下「ΔMCPR」という。)の最大値は9×9燃料(A型)について		
	炉心流量の減少により0.11となり、過渡時のMCPRは1.11以上を維		
	持する。原子炉圧力は初期値をわずかに上回るが,約7.18MPa[gage]		
	に上昇するにとどまる。		
	解析結果に示すように事象は収束する。その後は,再循環ポンプ5		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	台の運転となるが、必要があれば、通常の原子炉停止手順に従い、減		
	圧・降温を行い、冷態停止状態に移行することができる。		
	(9×9燃料(B型)の評価を行うための解析結果)		
	BAND I X及びFRANCESCAによる解析結果を第2.3-7図(2)に		
	示す。		
	再循環ポンプ5台がトリップすることにより、炉心流量は急速に減		
	少し、ボイドが急増する。ボイドの増加によって原子炉水位は上昇す		
	るが,原子炉水位高(レベル8)によるタービントリップには至らな		
	いので原子炉はスクラムしない。		
	第2.3-7図(2)に示すように、5台の再循環ボンプがトリップする		
	と正常側のボンプの流路抵抗は減少し、正常側ボンブの流量は約		
	144%に増加する。トリップしたボンブの流量は約1.2秒で逆流し、炉		
	心流重は定格流重の約58%となる。		
	中性子 束 及 び 表 面 熱 流 束 は 初 期 値 を 超 え な い 。 Δ M C P R の 最 大 値		
	は9×9燃料(B型)について炉心流重の減少により0.08となり、適		
	渡時のMCPRは1.14以上を維持する。原于炉圧力は初期値をわすか に上回てが、約7.19 Mo [rege]に上見せてに上ばまて		
	に上回るか,形1.10MFa[gage]に上升りるにここよる。 敏振結果にデオトるに声色は収まする。 その後は、再進環ずンプラ		
	時間福末に小りように事家は収束りる。その後は, 丹帽琛小シノ 3 台の運転となるが、必要があれば、通営の国子恒停止毛順に従い、減		
	日の運転となるが, 必要がめれば, 通用の床」が存立于順に促い, 阀 耳・隆涅を行い 必能停止状能に移行することができる		
	(4) 判断其進への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1). (2)及び(4)で		
	ある。		
	過渡時のMCPRは1.11以上であり、表面熱流束は初期値を超えること		
	はない。したがって、「1.1.1.3 判断基準」の(1)、(2)は満足される。		
	また,原子炉圧力は約7.18MPa[gage]にとどまり,原子炉冷却材圧力バ		
	ウンダリにかかる圧力は初期値を超えることはない。したがって、		
	「1.1.1.3 判断基準」の(4)も満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.3.2.2</u> 外部電源喪失	<u>(b)</u> 外部電源喪失	
	原子炉の出力運転中に、送電系統又は所内主発電設備の故障等により外		
	部電源が喪失する。これに伴い、送電系統の故障等では発電機負荷遮断が、		
	所内主発電設備の故障等ではタービントリップが生じる。ここでは、外部		
	電源が喪失する事象として最終的に所内補機への常用電源の供給が失われ		
	る送電系統の故障等を想定し、発電機負荷遮断を取り上げる。		
	(1) 原 因		
	外部電源の喪失により、発電機負荷遮断が生じ、蒸気加減弁が急速に	外部電源の喪失により、発電機負荷遮断が生じ、蒸気加減弁	
	閉止する。	が急速に閉止する <u>事象を想定する</u> 。	
	(2) 対策及び保護機能		
	a. 本原子炉施設は, 500kV送電線2回線に接続する。		
	b. タービン出力が40%以上で発電機負荷遮断が生じると, 蒸気加		
	減弁は急速閉止し同時に次のことを行う。		
	(a) 原子炉をスクラムさせる。(蒸気加減弁急速閉スクラム)		
	(b) 10台の再循環ポンプのうち5台をトリップさせる。		
	c. タービンバイパス弁を急開し, 原子炉圧力の上昇を緩和する。		
	d. 原子炉圧力が主蒸気逃がし安全弁(以下「逃がし安全弁」とい		
	う。)の設定値に達すれば、逃がし安全弁が開放する。		
	e. 原子炉を安全に停止するために必要な電力は, 非常用ディーゼ		
	ル発電機又は66kV送電線から受電される。		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	外部電源の喪失により発電機負荷遮断が生じ, 蒸気加減弁が急速閉		
	止され,原子炉はスクラムする。 <u>この結果として,</u> 所内補機への常用	<u>a)</u> 所内補機への常用電源の供給がすべて失われた場合を仮定	
	電源の供給がすべて失われた場合を仮定する。このとき所内の補機,	する。	
	例えば循環水ポンプ,復水ポンプ等がトリップし,次のような現象が		
	生じる。		
	循環水ポンプトリップは、復水器の真空度の低下を引き起こし、タ		
	ービントリップ,更には主蒸気隔離弁閉止につながる。		
	復水ポンプトリップに引き続き, タービン駆動原子炉給水ポンプも		
	ポンプ入口圧力低によりトリップする。原子炉給水ポンプトリップ		
	は,給水流量喪失を引き起こし原子炉水位の低下をもたらすが,実際		
	には原子炉水位低(レベル2)で原子炉隔離時冷却系が補給水機能と		
	して起動して、原子炉水位は適切な値に維持される。		
	蒸気加減弁の閉止等により、原子炉圧力が上昇する場合、逃がし安		
	全弁及びタービンバイパス弁の作動により過度の圧力上昇は抑制さ		
	れる。また、崩壊熱が十分に減少するまで逃がし安全弁の開閉が繰り返		
	される。		

頁 平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
このように種々の現象が重なって発生するが、ここでは以下の状態		
を仮定する。		
(a) 蒸気加減弁は、0.075秒で急速閉止すると仮定し、スクラム遅れ	<u>b)</u> 蒸気加減弁は、0.075秒で急速閉止すると仮定し、スクラム	
時間0.08秒を仮定する。	遅れ時間0.08秒を仮定する。	
(b) 所内電源は,瞬時に喪失するものとする。また,10台の再循環	<u>c)</u> 所内電源は, 瞬時に喪失するものとする。また, 10台の再	
ポンプのうち負荷遮断に伴ってトリップさせるポンプを除く残り5	循環ポンプのうち負荷遮断に伴ってトリップさせるポンプを	
台に接続されるMGセットについては,慣性定数を5.6秒とする。	除く残り5台に接続されるMGセットについては,慣性定数 を5.6秒とする。	
(c) 発電機負荷遮断により作動したタービンバイパス弁は,循環水ポ	<u>d)</u> 発電機負荷遮断により作動したタービンバイパス弁は,循	
ンプの停止に伴う復水器真空度の低下により閉止するが、この時間	環水ポンプの停止に伴う復水器真空度の低下により閉止する	
を所内電源の喪失より6秒後とする。	が,この時間を所内電源の喪失より6秒後とする。	
b. 解析結果		
(9×9燃料(A型)の評価を行うための解析結果)		
REDY及びSCATによる解析結果を第2.3-8図(1)に示す。		
外部電源喪失に伴って発電機負荷遮断が生じると、タービン発電		
機の出力負荷アンバランス検出回路からの信号で蒸気加減弁が急速閉		
止され、瞬時にタービン蒸気加減弁急速閉信号が発生して原子炉はス		
クラムし、10台の再循環ポンプのうち5台がトリップする。		
主蒸気の遮断により、原子炉圧力は上昇し、ボイドの減少によって		
炉心に正の反応度が投入されるが、再循環ポンプトリップによってボ		
イドの減少が緩和され、また、スクラムによる負の反応度投入により、		
中性子束は定格値の約105%に抑えられる。表面熱流束は初期値を超		
えることはなく、ΔMCPRの最大値は9×9燃料(A型)について		
0.09となる。また、負荷遮断と同時に原子炉圧力は上昇するが、ター		
ビンバイパス弁及び逃がし安全弁の作動により約7.97MPa[gage]に抑		
えられる。		
原子炉水位は徐々に低下するが,実際には原子炉水位低(レベル2)		
で原子炉隔離時冷却系が補給水機能として起動して適切な値に維持さ		
れる。また、原子炉圧力は逃がし安全弁により制御される。		
解析結果に示すように事象は収束する。その後は、原子炉スクラム		
(主蒸気隔離弁閉)時の原子炉停止手順に従い,減圧・降温を行い,		
冷態停止状態に移行することができる。		
(9×9燃料(B型)の評価を行うための解析結果)		
BANDIX及びFRANCESCAによる解析結果を第2.3-8図		
(2)に示す。		
外部電源喪失に伴って発電機負荷遮断が生じると、タービン発電機		
の出力負荷アンバランス検出回路からの信号で蒸気加減弁が急速閉止		
され、瞬時にタービン蒸気加減弁急速閉信号が発生して原子炉はスク		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	ラムし、10台の再循環ポンプのうち5台がトリップする。		
	主蒸気の遮断により、原子炉圧力は上昇し、ボイドの減少によって		
	炉心に正の反応度が投入されるが、再循環ポンプトリップによってボ		
	イドの減少が緩和され、また、スクラムによる負の反応度投入により、		
	中性子束は定格値の約110%に抑えられる。表面熱流束は初期値を超		
	えることはなく、ΔMCPRの最大値は9×9燃料(B型)について		
	0.06となる。また、負荷遮断と同時に原子炉圧力は上昇するが、ター		
	ビンバイパス及び逃がし安全弁の作動により約7.95MPa[gage]に抑え		
	られる。		
	原子炉水位は徐々に低下するが,実際には原子炉水位低(レベル2)		
	で原子炉隔離時冷却系が補給水機能として起動して適切な値に維持さ		
	れる。また、原子炉圧力は逃がし安全弁により制御される。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁閉)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		
	(4) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1), (2)及び(4)で		
	ある。		
	外部電源がすべて喪失した場合でも,過渡時のMCPRは1.13以上を		
	維持する。また、表面熱流束は初期値を超えることはない。したがって、		
	「1.1.1.3 判断基準」の(1),(2)は満足される。		
	原子炉圧力は,約7.97MPa[gage](原子炉冷却材圧力バウンダリにか		
	かる圧力は約8.09MPa[gage])まで上昇するにとどまり,「1.1.1.3 判		
	断基準」の(4)も満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.3.2.3</u> 給水加熱喪失	<u>(c)</u> 給水加熱喪失	
	(1) 原 因		
	原子炉の出力運転中に、給水加熱器への蒸気流量が喪失して、給水温	原子炉の出力運転中に、給水加熱器への蒸気流量が喪失して、	
	度が徐々に低下し、炉心入口サブクーリングが増加して、原子炉出力が	給水温度が徐々に低下し、炉心入口サブクーリングが増加して、	
	上昇する。	原子炉出力が上昇する <u>事象を想定する</u> 。	
	(2) 対策及び保護機能		
	a. 給水加熱器6段のうち, どの1段がその加熱機能を喪失しても, 給		
	水温度の変化が55℃以内になるよう給水系を設計する。		
	b. 中性子束高(熱流束相当) スクラムにより出力の異常上昇を抑える。		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	(a) 給水加熱器1段が加熱機能を喪失し、給水温度は、55℃低下する	<u>a)</u> 給水加熱器1段が加熱機能を喪失し、給水温度は、55℃低	
	と仮定する。給水加熱器から給水スパーシャ間の時間遅れは無視す	トすると仮定する。給水加熱器から給水スパーシャ間の時間	
		遅れは無視する。	
	(b) 再循境流量制御糸は, 手動運転モードとする。	<u>b)</u> 再循境流量制御糸は、手動連転モードとする。	
	$(9 \times 9 $ 然科 (A型) の評価を11) ための解析 結果)		
	$\mathbf{R} \mathbf{E} \mathbf{D} \mathbf{I} \mathbf{\chi} \mathbf{O} \mathbf{I} \mathbf{S} \mathbf{C} \mathbf{O} \mathbf{K} \mathbf{c} \mathbf{x} 0 \mathbf{\mu} \mathbf{\eta} \mathbf{h} \mathbf{\pi} \mathbf{x} \mathbf{c} \mathbf{h} 2, 3 = 9 \mathbf{S} (1) \mathbf{c} \mathbf{n} \mathbf{y},$ 給水加熱萌生の結果 后心入口サブカー 11 ングが増加し 百乙后出		
	福水加蒸長人の福米, ゲルスロサラク ランクが増加し, 床上ゲロ カけ上見する 由性子声け恒心入口サブターリングの増加に上り 完		
	加上約84秒で中性子東高(執流東相当)信号が発生して原子恒けス		
	クラムする。 $AMCPRの最大値は9 \times 9燃料 (A型) について過渡$		
	変化を通じて0.15であり、MCPRは1.07以上を維持する。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		
	(9×9燃料(B型)の評価を行うための解析結果)		
	BANDIX及びTHRPによる解析結果を第2.3-9図(2)に示す。		
	給水加熱喪失の結果、炉心入口サブクーリングが増加し、原子炉出		
	力は上昇する。中性子束は炉心入口サブクーリングの増加により、定		
	格値の約118%まで増加する。表面熱流束も定格値の約117%まで増		
	加し、約82秒で中性子束高(熱流束相当)信号が発生して原子炉はス		
	クラムする。ΔMCPRの最大値は9×9燃料(B型)について過渡		
	変化を通じて0.14であり、MCPRは1.08以上を維持する。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(4) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1),(2)及び(4)で		
	ある。		
	この過渡変化は、過渡解析の中で過渡時のMCPRが最も厳しくなる		
	ものである。この場合でも「2.2.2 解析条件」の項に述べたMCPRの		
	値1.22以上で運転していれば、過渡時のMCPRは、1.07以上を維持す		
	るので,「1.1.1.3 判断基準」の(1)は満足される。また,表面熱流束の		
	最大値は定格値の約118%であり,原子炉圧力は,約7.21MPa[gage](原		
	子炉冷却材圧力バウンダリにかかる圧力は約7.44MPa[gage])まで上昇		
	するにとどまる。したがって、「1.1.1.3 判断基準」の(2)、(4)も満足		
	される。		
	<u> </u>		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.3.2.3</u> 原子炉冷却材流量制御系の誤動作	<u>(d)</u> 原子炉冷却材流量制御系の誤動作	
	(1) 原 因		
	原子炉の出力運転中に, <u>原子炉冷却材</u> の再循環流量制御系の故障等に	原子炉の出力運転中に, <u>冷却材</u> の再循環流量制御系の故障等	記載の適正化
	より、再循環流量が増加し、原子炉出力が上昇する。	により,再循環流量が増加し,原子炉出力が上昇する <u>事象を想</u>	
		定する。	
	(2) 対策及び保護機能		
	a. 主制御器等の誤動作により、両系列の速度制御器に増加要求信号が		
	発生しても、添付書類八第7.3-3図に示すように速度要求偏差制限器		
	が付加されているので、どちらか一方の系列の速度制御器が誤動作す		
	る場合より厳しくならない。		
	b. どちらか一方の速度制御器,又はすくい管位置調節器が故障し		
	ても, すくい管位置調節器の特性によりすくい管移動速度を20%		
	/s程度に制限する。		
	c. 中性子束高スクラムにより出力の異常上昇を抑える。		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	(a) 最も厳しい過渡変化として、どちらか一方の系列の速度制御器に	<u>a)</u> 最も厳しい過渡変化として,どちらか一方の系列の速度制	
	増加要求信号が発生した場合を仮定する。	御器に増加要求信号が発生した場合を仮定する。	
	(b) すくい管の移動速度は、すくい管位置調節器の特性により20%/s	<u>b)</u> すくい管の移動速度は,すくい管位置調節器の特性により	
	に抑えられるとする。	20%/sに抑えられるとする。	
	(c) 再循環流量制御系は、手動運転モードとする。	<u>c)</u> 再循環流量制御系は,手動運転モードとする。	
	(d) 再循環流量増加量を厳しく評価するために原子炉は最低ポ	<u>d)</u> 再循環流量増加量を厳しく評価するために原子炉は最低ポ	
	ンプ速度最大出力(定格出力の65%,定格炉心流量の42%)で運	ンプ速度最大出力(定格出力の65%,定格炉心流量の42%)	
	転中とする。	で運転中とする。	
	(e) この解析におけるMCPR及び最大線出力密度の初期値は,最低ポ	<u>e)</u> この解析におけるMCPR及び最大線出力密度の初期値は,	
	ンプ速度最大出力点に対応して、9×9燃料(A型)ではそれぞれ	最低ポンプ速度最大出力点に対応して, 9×9燃料(A型)	
	1.37 及び 28kW/m, 9×9燃料(B型)ではそれぞれ 1.41 及び	ではそれぞれ1.37 <u>(※)</u> 及び28kW/m <u>(※)</u> , 9×9燃料(B型)	代表的数値を用いる解
	28kW/mとする。原子炉圧力の初期値は6.93MPa[gage]とする。	ではそれぞれ1.41 <u>(※)</u> 及び28kW/m <u>(※)</u> とする。原子炉圧	析条件へ注記を追加
		力の初期値は6.93MPa[gage]とする。	
	b. 解析結果		
	(9×9燃料(A型)の評価を行うための解析結果)		
	REDY及びSCATによる解析結果を第2.3-10図(1)に示す。		
	この過渡変化においては、炉心流量の増加に伴いボイドが減		
	少し、中性子束が増加する。このため出力も増加するが、燃料の熱伝		
	達遅れのため、炉心平均表面熱流束の増加は、炉心流量の増加に比べ		
	て緩やかなものとなる。中性子束の増加により約3.1秒後に中性子束		
	高信号が発生して、原子炉はスクラムする。		
	中性子束の最大値は、定格値の約180%に達し、炉心平均表面熱流束		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	は約4.0秒後に定格値の約84%に達する。また,過渡時のMCPRは9		
	×9燃料(A型)について1.27以上を維持する。原子炉圧力は,		
	約7.01MPa[gage]まで上昇するにとどまる。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		
	(9×9燃料(B型)の評価を行うための解析結果)		
	BANDIX及びFRANCESCAによる解析結果を第2.3-10		
	図(2)に示す。		
	この過渡変化においては, 炉心流量の増加に伴いボイドが減少		
	し、中性子束が増加する。このため出力も増加するが、燃料の熱		
	伝達遅れのため、炉心平均表面熱流束の増加は、炉心流量の増加		
	に比べて緩やかなものとなる。中性子束の増加により約3.2秒後に中		
	性子束高信号が発生して、原子炉はスクラムする。		
	中性子束の最大値は、定格値の約179%に達し、炉心平均表面熱流束		
	は約4秒後に定格値の約85%に達する。また,過渡時のMCPRは9		
	×9燃料(B型)について1.27以上を維持する。原子炉圧力は、約		
	7.02MPa[gage]まで上昇するにとどまる。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		
	(4) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1), (2)及び(4)で		
	ある。		
	この過渡変化においては、局所の表面熱流東は定格値を上回ることは		
	ない。また、部分負荷であるため、MCPRの初期値は大きく、過渡時		
	のMCPRは1.27以上を維持し、許容設計限界を下回ることはない。し		
	たかって「 $1.1.1.3$ 判断基準] $O(1)$, (2) は満足される。		
	また、原于炉行却材圧力ハワンタリにかかる圧力は約7.1(MPa[gage]		
	(原于炉圧刀は約7.02MPa[gage]) まで上升するにととまり、「1.1.1.3		
	判断基準」 (2(4) も 満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2.3.3 原子炉冷却材圧力又は原子炉冷却材保有量の異常な変化	<u> c</u> . 原子炉冷却材圧力又は原子炉冷却材保有量の異常な変化	
	<u>2.3.3.1</u> 負荷の喪失	<u>(a)</u> 負荷の喪失	
	この範ちゅうに属する事象として、発電機負荷遮断及びタービントリッ		
	プが考えられる。両者はほとんど同一の事象であるので、ここでは若干厳		
	しい発電機負荷遮断を取り上げる。		
	(1) 原 因		
	原子炉の出力運転中に送電系統の故障等により、発電機負荷遮断が生	原子炉の出力運転中に送電系統の故障等により、発電機負荷	
	じ、蒸気加減弁が急速に閉止し、原子炉圧力が上昇する。	遮断が生じ,蒸気加減弁が急速に閉止し,原子炉圧力が上昇す	
		る事象を想定する。	
	(2) 対策及び保護機能		
	a. タービン出力が40%以上で発電機負荷遮断が生じると, 蒸気加減弁		
	は急速閉止し同時に次のことを行う。		
	(a) 原子炉をスクラムさせる。(蒸気加減弁急速閉スクラム)		
	(b) 10台の再循環ポンプのうち5台をトリップさせる。		
	b. タービンバイパス弁を急開し, 原子炉圧力の上昇を緩和する。		
	c. 原子炉圧力が逃がし安全弁の設定値に達すれば, 逃がし安全弁が開		
	放する。		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	(a) タービンバイパス弁容量を定格蒸気流量の33%とする。	<u>a)</u> タービンバイパス弁容量を定格蒸気流量の33%とする。	
	(b) 蒸気加減弁は、0.075秒で急速閉止すると仮定し、スクラム遅れ	<u>b)</u> 蒸気加減弁は、0.075秒で急速閉止すると仮定し、スクラム	
	時間0.08秒を仮定する。	遅れ時間0.08秒を仮定する。	
	(c) 発電機負荷遮断時に、タービンバイパス弁が作動しないと仮定す	<u>c)</u> 発電機負荷遮断時に,タービンバイパス弁が作動しないと	
	ることは現実的には可能性が非常に低いと考えられるが、圧力上昇	仮定することは現実的には可能性が非常に低いと考えられる	
	及び熱的な面でタービンバイパス弁が作動する場合より厳しくなる	が、圧力上昇及び熱的な面でタービンバイパス弁が作動する	
	ため、ここではタービンバイパス弁が作動しない場合も仮定する。	場合より厳しくなるため、ここではタービンバイパス弁が作	
		動しない場合も仮定する。	
	b. 解析結果		
	発電機負荷遮断が生じると、発電機の出力負荷アンバランス検出回		
	路からの信号で蒸気加減弁が急速閉止され、瞬時に蒸気加減弁急速閉		
	信号が発生して、原子炉はスクラムする。		
	発電機負荷遮断の応答は、タービンバイパス系の状態に応じて以下		
	のようになる。		
	(a) タービンバイパス弁が作動する場合		
	(9×9燃料(A型)の評価を行うための解析結果)		
	定格出力の約102%から全負荷遮断した場合のREDY及びSC		
	ATによる解析結果を第2.3-11図(1)に示す。		
	発電機負荷遮断が生じると、蒸気加減弁が急速閉止され、原子炉		
	はスクラムし、10台の再循環ポンプのうち5台がトリップする。主		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	蒸気の遮断により、原子炉圧力は上昇し、ボイドの減少によって炉		
	心に正の反応度が投入されるが、再循環ポンプトリップによってボ		
	イドの減少が緩和され、また、スクラムによる負の反応度が投入さ		
	れるため、中性子束は定格値の約106%に抑えられる。炉心平均表面		
	熱流束は初期値を超えることはない。ΔMCPRの最大値は9×9		
	燃料(A型)について0.08となり,MCPRは1.14以上を維持する。		
	また、負荷遮断と同時に原子炉圧力は上昇するが、タービンバイパ		
	ス弁及び逃がし安全弁の作動により約7.98MPa[gage]に抑えられる。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラ		
	ム(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行		
	い、冷態停止状態に移行することができる。		
	(9×9燃料(B型)の評価を行うための解析結果)		
	定格出力の約102%から全負荷遮断した場合のBANDIX及び		
	FRANCESCAによる解析結果を第2.3-11図(2)に示す。		
	発電機負荷遮断が生じると、蒸気加減弁が急速閉止され、原子炉		
	はスクラムし、10台の再循環ポンプのうち5台がトリップする。主		
	蒸気の遮断により、原子炉圧力は上昇し、ボイドの減少によって炉		
	心に正の反応度が投入されるが、再循環ポンプトリップによってボ		
	イドの減少が緩和され、また、スクラムによる負の反応度が投入さ		
	れるため、中性子束は定格値の約111%に抑えられる。炉心平均表面		
	熱流束は初期値を超えることはない。ΔMCPRの最大値は9×9		
	燃料(B型)について0.05となり,MCPRは1.17以上を維持する。		
	また、負荷遮断と同時に原子炉圧力は上昇するが、タービンバイパ		
	ス弁及び逃がし安全弁の作動により約7.96MPa[gage]に抑えられる。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラ		
	ム(主蒸気隔離弁開)時の原子炉停止手順に従い、減圧・降温を行		
	い、冷態停止状態に移行することができる。		
	(b) タービンバイパス弁が作動しない場合		
	(9×9燃料(A型)の評価を行うための解析結果)		
	定格出力の約102%から全負荷遮断し,タービンバイパス弁不作		
	動の場合のREDY及びSCATによる解析結果を第2.3-12図(1)		
	に示す。		
	タービンバイパス弁の不作動を仮定しているため、タービンバイ		
	パス弁作動の場合に比べ、過渡変化は厳しくなるが、中性子束は定		
	格値の約112%に抑えられ, 炉心平均表面熱流束は初期値を超えるこ		
	とはない。ΔMCPRの最大値は9×9燃料(A型)について0.11		
	となり、MCPRは1.11以上を維持する。原子炉圧力は、タービン		
	バイパス弁が作動しないため上昇するが、逃がし安全弁の作動によ		
	り, 約8.25MPa[gage]に抑えられる。		

良	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	原子炉圧力は逃がし安全弁により制御される。		
	解析結果に示すように事象は収束する。その後は、タービンバイ		
	パス弁が使用できないので,原子炉スクラム(主蒸気隔離弁閉)時		
	の原子炉停止手順に従い、減圧・降温を行い、冷態停止状態に移行		
	することができる。		
	(9×9燃料(B型)の評価を行うための解析結果)		
	定格出力の約102%から全負荷遮断し,タービンバイパス弁不作		
	動の場合のBANDIX及びFRANCESCAによる解析結果を		
	第2.3-12図(2)に示す。		
	タービンバイパス弁の不作動を仮定しているため、タービン		
	バイパス弁作動の場合に比べ、過渡変化は厳しくなるが、中性		
	子束は定格値の約117%に抑えられ、炉心平均表面熱流束は初		
	期値を超えることはない。ΔMCPRの最大値は9×9燃料		
	(B型) について0.09となり, MCPRは1.13以上を維持する。		
	原子炉圧力は、タービンバイパス弁が作動しないため上昇する		
	が,逃がし安全弁の作動により,約8.23MPa[gage]に抑えられる。		
	原子炉圧力は逃がし安全弁により制御される。		
	解析結果に示すように事象は収束する。その後は、タービンバイ		
	パス弁が使用できないので,原子炉スクラム(主蒸気隔離弁閉)時		
	の原子炉停止手順に従い、減圧・降温を行い、冷態停止状態に移行		
	することができる。		
	(4) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1), (2)及び(4)で		
	ある。		
	発電機負荷遮断が生じた時にタービンバイパス弁が作動しないと仮定		
	した場合でも過渡時のMCPRは1.11以上を維持するので「1.1.1.3 判		
	断基準」の(1)は満足される。また、この場合局所の表面熱流束は初期		
	値を超えることはなく、原子炉冷却材圧力バウンダリにかかる圧力は約		
	8.37MPa[gage] (原子炉圧力は約8.25MPa[gage]) まで上昇するにとどまるの		
	で,「1.1.1.3 判断基準」の(2), (4)も満足される。		
	なお、この過渡変化は、過渡解析の中で過渡時の原子炉冷却材圧力バ		
	ウンダリにかかる圧力上昇が最も厳しくなるものである。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.3.3.2</u> 主蒸気隔離弁の誤閉止	(b) 主蒸気隔離弁の誤閉止	
	(1) 原 因		
	原子炉の出力運転中に、原子炉水位低等の誤信号、誤操作等により主	原子炉の出力運転中に、原子炉水位低等の誤信号、誤操作等	
	蒸気隔離弁が閉止し、原子炉圧力が上昇する。	により主蒸気隔離弁が閉止し,原子炉圧力が上昇する <u>事象を想</u>	
		定する。	
	(2) 対策及び保護機能		
	a. 主蒸気隔離弁の誤閉止に伴う原子炉圧力の上昇を予想し, 主蒸気隔		
	離弁が10%閉止すれば,原子炉をスクラムさせる。(主蒸気隔離弁閉		
	スクラム)		
	b. 原子炉圧力の異常上昇を防止するため, 原子炉圧力があらかじめ定		
	められた圧力に達すれば、逃がし安全弁を開放する。		
	(3) 解析条件及び解析結果		
	土 ※ ス 隔 離 井 の 闭 止 時 间 は , 設 計 上 安 求 さ れ る 設 正 範 囲 の 最 小 値 で ち z o 私 ち 田 い z	<u>a)</u> 土 ※ 気 隔離 开 の 闭 止 時 间 は , 設 計 上 要 求 さ れ る 設 正 範 囲 の	
	のつる沙を用いる。	取小胆でのる3秒を用いる。	
	D. 脾切和木 ($\mathbf{Q} \times \mathbf{Q}$ 燃約 (A 刑)の評価を行うための解析結果)		
	$(5 \land 5)$ 照相 (A至) の計画を行うための解析相未) REDV及びSCATに上ろ解析結果を第2 3-13図(1)に示す		
	約0.3秒で主蒸気隔離弁が全開位置から10%閉止すると 主蒸気隔		
	離弁の位置検出スイッチにより主蒸気隔離弁閉信号が発生し、原子炉		
	はスクラムする。		
	主蒸気が遮断されると原子炉圧力は上昇し、ボイドの減少によって		
	炉心に正の反応度が投入されるが、主蒸気隔離弁閉スクラムによる負		
	の反応度効果のため中性子束及び炉心平均表面熱流束は初期値を超え		
	ることはない。また、MCPRは初期値を下回らない。主蒸気隔離弁		
	の閉止に伴い原子炉圧力は上昇するが、約2.4秒後に逃がし安全弁が		
	作動し,約8.04MPa[gage]に抑えられる。		
	主蒸気隔離弁の閉止により、タービン駆動原子炉給水ポンプの速度		
	が低下し、これに伴って原子炉の水位は低下する。原子炉スクラム後		
	も崩壊熱によって蒸気が発生するので、原子炉圧力は上昇し、逃がし		
	安全弁が間欠的に開放する。		
	原子炉水位は徐々に低下するが,実際には原子炉水位低(レベル2)		
	で原子炉隔離時冷却系が補給水機能として起動して適切な値に維持さ		
	れる。また、原子炉圧力は逃がし安全弁により制御される。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(王烝気隔離开闭) 時の原子炉停止手順に従い, 減圧・降温を行い,		
	⑦ 照停止 次 照に移行することかできる。 (○ × ○ 牌本) の 評 ((○ ★ ○ 中本)) の 部 ((○ ★ ○ 中本))		
	(9×9燃料(B型)の評価を行うための解析結果)		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	BANDIX及びFRANCESCAによる解析結果を第2.3-13		
	図(2)に示す。		
	約0.3秒で主蒸気隔離弁が全開位置から10%閉止すると,主蒸気隔離		
	弁の位置検出スイッチにより主蒸気隔離弁閉信号が発生し、原子炉		
	はスクラムする。		
	主蒸気が遮断されると原子炉圧力は上昇し、ボイドの減少によって		
	炉心に正の反応度が投入されるが,主蒸気隔離弁閉スクラムによる負		
	の反応度効果のため中性子束及び炉心平均表面熱流束は初期値を超え		
	ることはない。また、MCPRは初期値を下回らない。主蒸気隔離弁		
	の閉止に伴い原子炉圧力は上昇するが、約2.3秒後に逃がし安全弁が		
	作動し,約8.07MPa[gage]に抑えられる。		
	主蒸気隔離弁の閉止により、タービン駆動原子炉給水ポンプの速度		
	が低下し、これに伴って原子炉の水位は低下する。原子炉スクラム後		
	も崩壊熱によって蒸気が発生するので、原子炉圧力は上昇し、逃がし		
	安全弁が間欠的に開放する。		
	原子炉水位は徐々に低下するが、実際には原子炉水位低(レベ		
	ル2)で原子炉隔離時冷却系が補給水機能として起動して適切な		
	値に維持される。また,原子炉圧力は逃がし安全弁により制御される。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁閉)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		
	(4) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1),(2)及び(4)で		
	ある。		
	主蒸気隔離弁の閉止速度は、蒸気加減弁急速閉止に比べかなり遅いの		
	で、この過渡変化は発電機負荷遮断、タービンバイパス弁不作動時に比		
	べ緩和されている。		
	過渡時のMCPRは初期値を下回ることなく、「1.1.1.3 判断基準」		
	の(1)は満足される。また、局所の表面熱流束も初期値を超えることは		
	なく,原子炉冷却材圧力バウンダリにかかる圧力は約8.27MPa[gage](原		
	子炉圧力は約8.07MPa[gage])まで上昇するにとどまる。したがって,		
	「1.1.1.3 判断基準」の(2), (4)も満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.3.3.3</u> 給水制御系の故障	<u>(c)</u> 給水制御系の故障	
	(1) 原 因		
	原子炉の出力運転中に、原子炉給水制御系の故障等により、給水流量	原子炉の出力運転中に、原子炉給水制御系の故障等により、	
	が急激に増加し、炉心入口サブクーリングが増加して、原子炉出力が上	給水流量が急激に増加し, 炉心入口サブクーリングが増加して,	
	昇する。	原子炉出力が上昇する <u>事象を想定する</u> 。	
	(2) 対策及び保護機能		
	a. 原子炉給水ポンプの保護機能により,給水流量を定格値の136%に		
	抑える。		
	b. 原子炉水位上昇によるキャリーオーバーの増加に対してタービンを		
	保護するため、原子炉水位高(レベル8)でタービンをトリップする。		
	c. タービントリップにより,原子炉はスクラムする。		
	d. 主蒸気止め弁閉止により、10台の再循環ポンプのうち5台がトリッ		
	プする。		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	(a) 給水流量は瞬時に定格流量の138%になるとする。	<u>a)</u> 給水流量は瞬時に定格流量の138%になるとする。	
	(b) 再循環流量制御系は、手動運転モードとする。	<u>b)</u> 再循環流量制御系は,手動運転モードとする。	
	b. 解析結果		
	(9×9燃料(A型)の評価を行うための解析結果)		
	REDY及びSCATによる解析結果を第2.3-14図(1)に示す。		
	給水流量増加による炉心入口サブクーリングの増加によってボイド		
	が減少し、原子炉出力が上昇する。原子炉水位は、初め上昇し続け、		
	やがて原子炉水位高(レベル8)によるタービントリップ点に達し、		
	タービン及び原子炉給水ポンプがトリップする。これにより約10秒後		
	に主蒸気止め弁閉信号が発生して,原子炉はスクラムし,10台の再循		
	環ポンプのうち5台がトリップする。主蒸気の遮断により、原子炉圧		
	力は上昇し、ボイドの減少によって炉心に正の反応度が投入されるが、		
	再循環ポンプトリップによってボイドの減少が緩和され、また、スク		
	ラムによる負の反応度が投入されるため、中性子束は定格値の約		
	114%に抑えられるとともに、炉心平均表面熱流束は定格値の約		
	106%に抑えられる。また、 Δ MC P R の最大値は 9×9 燃料 (A型)		
	について0.11であり, MCPRは1.11以上を維持する。タービンバイ		
	パス弁及び逃がし安全弁の作動により、原子炉圧力は約		
	7.99MPa[gage]に抑えられる。		
	原子炉給水ボンブはトリップしているため、原子炉水位は徐々に低		
	下するが、実際には原子炉水位低(レベル2)で原子炉隔離時冷却系		
	が補給水機能として起動して適切な値に維持される。また、原子炉圧		
	力は逃がし安全弁により制御される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		
	(9×9燃料(B型)の評価を行うための解析結果)		
	BANDIX及びFRANCESCAによる解析結果を第2.3-14		
	図(2)に示す。		
	給水流量増加による炉心入口サブクーリングの増加によってボイド		
	が減少し、原子炉出力が上昇する。原子炉水位は、初め上昇し続け、		
	やがて原子炉水位高(レベル8)によるタービントリップ点に達し,		
	タービン及び原子炉給水ポンプがトリップする。これにより約11秒後		
	に主蒸気止め弁閉信号が発生して,原子炉はスクラムし,10台の再循		
	環ポンプのうち5台がトリップする。主蒸気の遮断により、原子炉圧		
	力は上昇し,ボイドの減少によって炉心に正の反応度が投入されるが,		
	再循環ポンプトリップによってボイドの減少が緩和され、また、スク		
	ラムによる負の反応度が投入されるため、中性子束は定格値の約		
	117%に抑えられるとともに、炉心平均表面熱流束は定格値の約		
	106%に抑えられる。また、ΔMCPRの最大値は9×9燃料(B型)		
	について0.09であり, MCPRは1.13以上を維持する。タービンバイ		
	パス弁及び逃がし安全弁の作動により、原子炉圧力は約		
	7.97MPa[gage]に抑えられる。		
	原子炉給水ポンプはトリップしているため,原子炉水位は徐々に低		
	下するが,実際には原子炉水位低(レベル2)で原子炉隔離時冷却系		
	が補給水機能として起動して適切な値に維持される。また、原子炉圧		
	力は逃がし安全弁により制御される。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		
	(4) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1), (2)及び(4)で		
	ある。		
	過渡時のMCPRは1.11以上を維持するので、「1.1.1.3 判断基準」の		
	(1)は満足される。また、局所の表面熱流束の最大値は定格値の約104%		
	(炉心平均表面熱流束の最大値は定格値の約106%)であり、原子炉冷却		
	材圧力バウンダリにかかる圧力は約8.12MPa[gage](原子炉圧力は約		
	7.99MPa[gage])まで上昇するにとどまる。したがって,「1.1.1.3 判断		
	基準」の(2),(4)も満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.3.3.4</u> 原子炉圧力制御系の故障	(d) 原子炉圧力制御系の故障	
	(1) 原 因		
	原子炉の出力運転中に, <u>以下に示すような</u> 原子炉圧力制御系の故障等	原子炉の出力運転中に,原子炉圧力制御系の故障等により,	
	により、主蒸気流量が変化する。	主蒸気流量が変化する事象を想定する。	
	a. 何らかの原因で, 圧力制御装置に主蒸気流量を零とするような零出		
	力信号、又は主蒸気流量を最大とするような最大出力信号の誤信号が		
	発生する。		
	b. 何らかの原因で,蒸気加減弁又はタービンバイパス弁1個が故障し,		
	制御系の信号に関係なくこれらの弁が開閉する。		
	(2) 対策及び保護機能		
	a. 圧力制御装置は, 仮に1系統の機能喪失があっても, 圧力制御系の		
	機能が喪失することがないよう多重性を有する設計とする。		
	b. 圧力制御装置の最大流量制限器により,最大出力信号は主蒸気流量		
	を定格値の115%に抑える。		
	c. 原子炉圧力の異常低下を防止するため, タービン入口圧力が約		
	0.7MPa低下し, 6.00MPa[gage]に達すると, 主蒸気隔離弁を閉止する。		
	主蒸気隔離弁が10%閉止すれば,原子炉はスクラムする。		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	圧力制御装置が故障し,零出力信号が入り,原子炉圧力が上昇		
	する過渡変化は発電機負荷遮断の解析で代表される。また, 蒸気		
	加減弁、タービンバイパス弁の開閉方向の1個誤作動の場合は、他の		
	弁の制御により調整される。 <u>したがって,ここでは原子炉圧力が低下</u>		
	<u>する過渡変化の代表例として</u> ,圧力制御装置から最大出力信号が発生 した場合を仮定する	<u>a)</u> 圧力制御装置から最大出力信号が発生した場合を仮定する。	
	(a) 最大出力信号は 117% にたるとする	b) 最大出力信号は 117%にたろとすろ	
	(a) 取入田が信がな、111/00になるとする。 (b) タービン入口圧力が0.69MPa低下し、6.07MPa[gage]に達すスと	<u>b</u> 取入田がは、 Π がになってする。 c) タービン入口圧力が0.69MPa低下し、6.07MPa[gage]に達す	
	<u>(b)</u> ジービッパロニケル 0.00m d (x + 0, 0.01m d (gdge) (こ (注) - 3 C, 主蒸気隔離 4 が閉止するとする	ろと 主蒸気隔離弁が閉止すろとすろ	
	b. 解析結果		
	(9×9燃料(A型)の評価を行うための解析結果)		
	REDY及びSCATによる解析結果を第2.3-15図(1)に示す。		
	最大出力信号が出ると蒸気加減弁は全開し、タービンバイパス弁も		
	部分的に開く。すなわち、原子炉の出力以上に蒸気が流出し、原子炉		
	圧力及びタービン入口圧力は低下する。このためボイドが増加し、中		
	性子束は減少する。タービン入口圧力が0.69MPa低下すると主蒸気隔離		
	弁が閉止し、約8.3秒後に主蒸気隔離弁閉信号により原子炉はスク		
	ラムする。		
	主蒸気隔離弁閉止時の原子炉出力が低いため、原子炉圧力は約		

(.(5MFalgage)に抑えられる。また,甲性士釆及い炉心平均衣面熱流	
束は初期値を超えることはない。	
初め、原子炉から蒸気が過剰に流れるため、圧力容器内の冷却材保	
有量が減少するが、原子炉圧力も低下しているため、フラッシングに	
より原子炉水位はほとんど変化しない。しかし、主蒸気隔離弁の閉止	
に伴い、原子炉圧力が上昇して、ボイドがつぶれ、原子炉水位は急激	
に低下する。原子炉水位低(レベル3)により10台の再循環ポンプの	
うち5台がトリップするが、このときには原子炉はスクラムされてい	
るため、過渡時のMCPRは初期値を下回ることはない。	
原子炉水位は徐々に低下するが,実際には原子炉水位低(レベル2)	
で、原子炉隔離時冷却系が補給水機能として起動して適切な値に維持	
される。また、原子炉圧力は逃がし安全弁により制御される。	
解析結果に示すように事象は収束する。その後は、原子炉スクラム	
(主蒸気隔離弁閉)時の原子炉停止手順に従い,減圧・降温を行い,	
冷態停止状態に移行することができる。	
(9×9燃料(B型)の評価を行うための解析結果)	
BANDIX及びFRANCESCAによる解析結果を第2.3-15	
図(2)に示す。	
最大出力信号が出ると蒸気加減弁は全開し,タービンバイパス	
弁も部分的に開く。すなわち,原子炉の出力以上に蒸気が流出し,	
原子炉圧力及びタービン入口圧力は低下する。このためボイドが増加	
し、中性子束は減少する。タービン入口圧力が0.69MPa低下すると主蒸	
気隔離弁が閉止し、約8.7秒後に主蒸気隔離弁閉信号により原子炉	
はスクラムする。	
主蒸気隔離弁閉止時の原子炉出力が低いため、原子炉圧力は約	
7.80MPa[gage]に抑えられる。また,中性子束及び炉心平均表面熱流	
束は初期値を超えることはない。	
初め、原子炉から蒸気が過剰に流れるため、圧力容器内の冷却材保	
有量が減少するが、原子炉圧力も低下しているため、フラッシングに	
より原子炉水位はほとんど変化しない。しかし、主蒸気隔離弁の閉止	
に伴い、原子炉圧力が上昇して、ボイドがつぶれ、原子炉水位は急激	
に低下する。原子炉水位低(レベル3)により10台の再循環ポンプの	
うち5台がトリップするが、このときには原子炉はスクラムされてい	
るため、過渡時のMCPRは初期値を下回ることはない。	
原子炉水位は徐々に低下するが,実際には原子炉水位低(レベル2)	
で、原子炉隔離時冷却系が補給水機能として起動して適切な値に維持	
される。また、原子炉圧力は逃がし安全弁により制御される。	
解析結果に示すように事象は収束する。その後は、原子炉スクラム	
(主蒸気隔離弁閉)時の原子炉停止手順に従い,減圧・降温を行い,	

頁	平成 21 年 12 月設置許可申請	設置法附則第 23 条第4項に基づく提出書(補正後)	備考
	冷態停止状態に移行することができる。		
	(4) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1), (2)及び(4)で		
	ある。		
	MCPRは、初期値を下回ることなく「1.1.1.3 判断基準」の(1)は		
	満足される。また、局所の表面熱流束は初期値を超えることはなく、原		
	子炉冷却材圧力バウンダリにかかる圧力は約7.91MPa[gage](原子炉圧力		
	は約7.80MPa[gage])まで上昇するにとどまる。したがって,「1.1.1.3		
	判断基準」の(2),(4)も満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>2.3.3.5</u> 給水流量の全喪失	<u>(e)</u> 給水流量の全喪失	
	(1) 原因		
	原子炉の出力運転中に,原子炉給水制御系の故障又は原子炉給水ポンプ	原子炉の出力運転中に、原子炉給水制御系の故障又は原子炉	
	のトリップにより,部分的な給水流量の減少又は全給水流量の喪失が起こ	給水ポンプのトリップにより、部分的な給水流量の減少又は全	
	り原子炉水位が低下する。	給水流量の喪失が起こり原子炉水位が低下する <u>事象を想定する</u> 。	
	(2) 対策及び保護機能		
	a. 原子炉給水ポンプには予備を設け, ポンプがトリップした場合には,		
	予備のポンプが自動起動する設計とする。		
	b. 原子炉水位低(レベル3)で原子炉をスクラムし,水位の異常低下		
	を防止する。		
	c. 原子炉水位低(レベル2)で原子炉隔離時冷却系が補給水機能として		
	起動し、原子炉水位を維持する。		
	(3) 解析条件及び解析結果		
	a. 解析条件		
	(a) 最も厳しい場合として,全給水流量の喪失を仮定する。	<u>a)</u> 最も厳しい場合として,全給水流量の喪失を仮定する。	
	(b) 原子炉給水ポンプの慣性を考慮して,給水流量が完全に喪失するま	<u>b)</u> 原子炉給水ポンプの慣性を考慮して,給水流量が完全に喪	
	でに5秒を要するとする。	失するまでに5秒を要するとする。	
	(c) 原子炉隔離時冷却系の効果は考慮しない。	<u>c)</u> 原子炉隔離時冷却系の効果は考慮しない。	
	b. 解析結果		
	(9×9燃料(A型)の評価を行うための解析結果)		
	REDY及びSCATによる解析結果を第2.3-16図(1)に示す。		
	給水流量の喪失による圧力容器への流入給水量と流出蒸気量との不		
	整合により,原子炉水位は急速に低下する。このため,約7.0秒で原		
	子炉水位低(レベル3)信号が発生して,原子炉はスクラムし,10台		
	の再循環ポンプのうち5台がトリップする。さらに,約16秒後に原子		
	炉水位低(レベル2)により再循環ポンプMGセット1台がトリップ		
	する。このとき原子炉は既にスクラムされており、出力は十分減少し		
	ているので、緩やかな過渡変化となる。		
	中性子束は定格値の約104%に抑えられる。炉心平均表面熱流束及		
	び原子炉圧力は初期値を超えることはなく、MCPRも初期値を下回		
	ることはない。		
	この過渡変化は本節で解析した過渡変化中で水位の低下が最も厳し		
	いものであるが、この場合にも実際には原子炉水位低(レベル2)で		
	原子炉隔離時冷却系が補給水機能として起動し、原子炉水位の低下を		
	防ぐのでレベル1.5に対して十分な余裕をもって原子炉水位の回復が		
	可能である。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行い,		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	冷態停止状態に移行することができる。		
	(9×9燃料(B型)の評価を行うための解析結果)		
	BANDIX及びFRANCESCAによる解析結果を第2.3-16		
	図(2)に示す。		
	給水流量の喪失による圧力容器への流入給水量と流出蒸気量との不		
	整合により,原子炉水位は急速に低下する。このため,約7.0秒で原		
	子炉水位低(レベル3)信号が発生して,原子炉はスクラムし,10台		
	の再循環ポンプのうち5台がトリップする。さらに,約17秒後に原子		
	炉水位低(レベル2)により再循環ポンプMGセット1台がトリップ		
	する。このとき原子炉は既にスクラムされており、出力は十分減少し		
	ているので、緩やかな過渡変化となる。		
	中性子束は定格値の約106%に抑えられる。炉心平均表面熱流		
	束及び原子炉圧力は初期値を超えることはなく, MCPRも初期値		
	を下回ることはない。		
	この過渡変化は本節で解析した過渡変化中で水位の低下が最も厳し		
	いものであるが、この場合にも実際には原子炉水位低(レベル2)で		
	原子炉隔離時冷却系が補給水機能として起動し、原子炉水位の低下を		
	防ぐのでレベル1.5に対して十分な余裕をもって原子炉水位の回復が		
	可能である。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁開)時の原子炉停止手順に従い,減圧・降温を行い,		
	冷態停止状態に移行することができる。		
	(4) 判断基準への適合性の検討		
	本事象に対する判断基準は「1.1.1.3 判断基準」の(1), (2)及び(4)で		
	ある。		
	この過渡変化においては、MCPRは初期値を下回ることはない。し		
	たがって「1.1.1.3 判断基準」の(1)は満足される。また,局所の表面		
	熱流束は初期値を超えることはなく、原子炉圧力、原子炉冷却材圧力バ		
	ウンダリにかかる圧力とも初期値を超えることはない。したがって、		
	「1.1.1.3 判断基準」の(2), (4)も満足される。		
<u> </u>			

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類十 再提: P.10-1-11	 1.2 解析に当たって考慮する事項 1.2.1 解析に当たって考慮する範囲 <u>また,</u>解析は,原則として事象が収束し,支障なく冷態停止に至ること ができることが合理的に推定できる時点までとする。 	解析は,原則として事象が収束し,支障なく冷態停止に至ること ができることが合理的に推測できる時点までとする。	
添付書類十 再提 : P.10-1-11	 1.2 解析に当たって考慮する事項 1.2.1 解析に当たって考慮する範囲 想定された事象の解析を行うに当たっては、異常状態の発生前の状態として、本原子炉施設の通常運転範囲及び運転期間の全域について考慮し、 サイクル期間中の炉心燃焼度変化、燃料交換等による長期的な変動及び運転中予想される異なった運転モードを考慮して、判断基準に照らして最も 厳しくなる初期状態を選定する。 	<u>(※)サイクル期間中の炉心燃焼度変化及び燃料取替等により変動する</u> <u>値であり,設計上の制限値ではない。</u>	代表的数値を用いる解 析条件へ注記を追加
· 			

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2.4 結 論 既に述べたとおり,解析では種々の保守的な仮定をおいているにもかか わらず,本原子炉は,沸騰水型原子炉が持つ自己制御性と,種々の安全保 護系の動作があいまって,「運転時の異常な過渡変化」を安定に制御し, 燃料及び原子炉冷却材圧力バウンダリの健全性を保持することが示され, 「運転時の異常な過渡変化」の観点から本原子炉施設の安全設計の基本方	(3) 評価結果 判断基準に対する解析結果は以下のとおりである。	
	針の妥当性が確認された。 <u>すなわち、MCPRは</u> 1.22以上に維持されて運転されるため、最も厳し い過渡変化である給水加熱喪失時でもMCPRは許容設計限界1.07を下回 ることはない。したがって、「1.1.1.3 判断基準」の(1)を満足している。	(i) MCPR <u>については、</u> 1.22以上に維持されて運転されるため、最 も厳しい過渡変化である給水加熱喪失時でもMCPRは許容設計限 界1.07を下回ることはない。	
	<u>また、</u> 燃料の局所の表面熱流束が最も厳しくなる出力運転中の制御棒の 異常な引き抜き時においても、9×9燃料(A型)のみで構成される炉心 及び9×9燃料(B型)のみで構成される炉心について局所の表面熱流束 の最大値は定格値の約120%であり、燃料被覆管の1%塑性歪に対応する表 面熱流束169%を下回っている。したがって、「1.1.1.3 判断基準」の(2) を満足している。	(i) 燃料の局所の表面熱流束が最も厳しくなる出力運転中の制御棒の 異常な引き抜き時においても、9×9燃料(A型)のみで構成され る炉心及び9×9燃料(B型)のみで構成される炉心について局所 の表面熱流束の最大値は定格値の約120%であり、燃料被覆管の1% 塑性歪に対応する表面熱流束169%を下回っている。	
	<u>また、</u> 原子炉起動時における制御棒の異常な引き抜き時において、9× 9燃料(A型)のみで構成される炉心及び9×9燃料(B型)のみで構成 される炉心について投入される反応度は、約0.72ドルにとどまり、反応度 投入事象には至らないことから、原子炉出力の上昇は緩やかとなり、 「1.1.1.3 判断基準」の(3)で防止している燃料エンタルピの増加に伴う燃 料の破損は生じない。	(iii) 原子炉起動時における制御棒の異常な引き抜き時において、9× 9燃料(A型)のみで構成される炉心及び9×9燃料(B型)のみ で構成される炉心について投入される反応度は、約0.72ドルにとど まり、反応度投入事象には至らないことから、原子炉出力の上昇は 緩やかとなり、燃料エンタルピの増加に伴う燃料の破損は生じない。	
添付書類十 再提: P.10-2-11	 2.3.1.1 原子炉起動時における制御棒の異常な引き抜き (5) 判断基準への適合性の検討 なお,<u>この過渡変化では、</u>浸水燃料の存在を仮定しても浸水燃料 の破裂は生じない。 	なお、浸水燃料の存在を仮定しても浸水燃料の破裂は生じない。	
	<u>また</u> ,原子炉冷却材圧力バウンダリにかかる圧力が最大となるのは,負荷の喪失(発電機負荷遮断,タービンバイパス弁不作動)時であるが,この場合でも原子炉冷却材圧力バウンダリにかかる圧力は <u>約 8.37MPa[gage]</u> (原子炉圧力は <u>約 8.25MPa[gage]</u>)に抑えられている。これらの数値は,原 子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍(9.48MPa[gage])を十 分下回って <u>おり、「1.1.1.3 判断基準」の(4)を満足して</u> いる。	(iv) 原子炉冷却材圧力バウンダリにかかる圧力が最大となるのは、負荷の喪失(発電機負荷遮断、タービンバイパス弁不作動)時であるが、この場合でも原子炉冷却材圧力バウンダリにかかる圧力は約8.4MPa[gage](原子炉圧力は約8.3MPa[gage])に抑えられている。これらの数値は原子炉冷却材圧力バウンダリの最高使用圧力の1.1倍(9.48MPa[gage])を十分下回っている。	有効数字二桁で切り上 げ処理

なお、再構現ボンプリたの運転時に「運転時の原金な過渡変化」において 想定している事象が発生した場合の所能制ます。10台運転の解析結果と同等 又は相附基準に対して余裕のある結果となっている ⁽¹⁰⁾ 。	頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補)
想定している事象が発生した場合の解析結果は、10台運転の解析結果と同等 又は判断基準に対して余裕のある結果となっている ⁽¹⁰⁾ 。		なお、再循環ポンプ9台の運転時に「運転時の異常な過渡変化」において	
又は判断基準に対して余裕のある結果となっている「1.0」。		想定している事象が発生した場合の解析結果は,10台運転の解析結果と同等	
		又は判断基準に対して余裕のある結果となっている (10)。	

出書	(補正後)	備考	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	2.5 参考文献		
	(1) 「沸騰水型原子力発電所 プラント動特性解析手法について」		
	(株式会社日立製作所,HLR-014訂2,昭和63年3月)		
	(2) 「BWRプラント動特性解析手法について」		
	(原子燃料工業株式会社, NLR-07, 平成2年5月)		
	(3) 「BWRの非常用炉心冷却系解析手法について」		
	(原子燃料工業株式会社, NLR-010改訂1, 平成10年5月)		
	(4) 「沸騰水形原子力発電所」原子炉の熱設計手法について」		
	(株式会社日立製作所, HLR-008, 昭和52年4月)		
	(5) 「 $BWRの 烈水 刀設 計 計 算 手 法 に つ い て 」 (「 こ ス 地 い に 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、$		
	(原于燃料工業株式会社,NLR-02,平成2年5月)		
	(6) 「佛騰水望原十刀先竜所 反応度投入事家胜朳于法について」 (株式会社日立制佐託 III D 019至2) 正式11年9日)		
	(株式云社日立衆作所, HLK -012 司3, 平成 11 年 2 月) (7) 「BWBの反応度扱入事免解抵手法について」		
	(何 - B W R O) 反心反议八事家府们于仏について」(百子 燃料工業株式 合社 NI R -00 亚成6年4月)		
	(8) 「沸腾水形原子力発電所 3次元核教水力計算手法について」		
	(株式会社日立製作所, HLR-006訂1, 昭和59年9月)		
	(9) 「BWRの三次元核熱水力設計計算手法について」		
	(原子燃料工業株式会社, NLR-03, 平成6年4月)		
	(10) 「沸騰水型原子力発電所 原子炉内蔵型の原子炉冷却材再循環ポンプ		
	の運転台数とプラント挙動評価」		
	(株式会社日立製作所, HLR-062訂1, 平成12年9月)		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
		 ごは計算事故 事故に対処するために必要な施設並びに発生すると想 定される事故の程度及び影響の評価を行うために設定した条件及びその 評価の結果 	
添付書類十 再提 : P. 10−1−6	1.1.2.2 評価事象 本原子炉において評価する <u>「事故」</u> は,「安全評価審査指針」に基づき, 原子炉施設から放出される放射性物質による敷地周辺への影響が大きくな る可能性のある事象について,これらの事象が発生した場合における工学 的安全施設等の主としてMSに属する構築物,系統及び機器の設計の妥当 性を確認する見地から,代表的な事象を選定する。具体的には,以下に示 す異常な状態を生じさせる可能性のある事象とする。	 (1) 基本方針 (1) 評価事象 本原子炉において評価する設計基準事故(以下ロ 設計基準事故 において「事故」という。)は、「安全評価審査指針」に基づき、原 子炉施設から放出される放射性物質による敷地周辺への影響が大き くなる可能性のある事象について、これらの事象が発生した場合に おける工学的安全施設等の主としてMSに属する構築物、系統及び 機器の設計の妥当性を確認する見地から、代表的な事象を選定する。 具体的には、以下に示す異常な状態を生じさせる可能性のある事象 とする。 	記載の適正化
添付書類十 再提 : P. 10-1-7	1.1.2.2 評価事象 なお,原子炉冷却材ポンプの軸固着については,本原子炉では,原子炉 冷却材流量の喪失の評価に十分包絡されるため事象の解析を省略する。	なお,原子炉冷却材ポンプの軸固着については,本原子炉では, 原子炉冷却材流量の喪失の評価に十分包絡されるため事象の解析を 省略する。	
添付書類十 再提: P.10-1-6~7	 1.1.2.2 評価事象 原子炉冷却材の喪失又は炉心冷却状態の著しい変化 原子炉冷却材売量の喪失 原子炉冷却材ポンプの軸固着 ② 反応度の異常な投入又は原子炉出力の急激な変化 制御棒落下 ③ 環境への放射性物質の異常な放出 加射性気体廃棄物処理施設の破損 主蒸気管破断 無外集合体の落下 原子炉冷却材喪失 制御棒落下 (4) 原子炉格納容器内圧力,雰囲気等の異常な変化 原子炉冷却材喪失 可燃性ガスの発生 動荷重の発生 	 a.原子炉冷却材の喪失又は炉心冷却状態の著しい変化 原子炉冷却材喪失 原子炉冷却材流量の喪失 原子炉冷却材ポンプの軸固着 b.反応度の異常な投入又は原子炉出力の急激な変化 制御棒落下 c.環境への放射性物質の異常な放出 放射性気体廃棄物処理施設の破損 主蒸気管破断 燃料集合体の落下 原子炉冷却材喪失 制御棒落下 d.原子炉格納容器内圧力,雰囲気等の異常な変化 原子炉冷却材喪失 可燃性ガスの発生 動荷重の発生 	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類十 再提: P.10-3-95	3.5.3 動荷重の発生 格納容器及び格納容器内部の構造物は、LOCA時及び逃がし安全弁作 動時に生じると考えられる動荷重に対し健全性を損なわない構造強度を有 する設計とするため、サプレッションチェンバの構造が基本的に MARKII型格納容器と同様の円筒形状であること及び逃がし安全弁の排 気管についてもMARKII型格納容器と同様の構造であることから「BW R.MARKII型格納容器圧力抑制系に加わる動荷重の評価指針」を準用 し、上記指針に示されている手法に従って荷重の評価を行い ⁽³¹⁾ 、経済産 業省告示等に定められている基準を満足するように設計する。	動荷重の発生については、「BWR.MARKII型格納容器圧力抑 制系に加わる動荷重の評価指針」を準用して動荷重の評価を行い、 動荷重による応力が、原子力規制委員会規則等で定める許容応力を 上回らないことを詳細設計段階で確認する。	最新法令の反映
添付書類十 再提: P.10-1-7	 1.1.2.3 判断基準 想定された事象が生じた場合,炉心の溶融あるいは著しい損傷のおそれ がなく,かつ,事象の過程において他の異常状態の原因となるような2次 的損傷が生じなく,さらに放射性物質の放散に対する障壁の設計が妥当で あることを確認する。このことを判断する基準は以下のとおりである。 (1) 炉心は著しい損傷に至ることなく,かつ,十分な冷却が可能であるこ と。 (2) 燃料エンタルピは,「反応度投入事象評価指針」に示された制限値を 超えないこと。 (3) 原子炉冷却材圧力バウンダリにかかる圧力は,最高使用圧力である 8.62MPa[gage]の1.2倍の圧力10.34MPa[gage]以下であること。 (4) 原子炉格納容器バウンダリにかかる圧力は,最高使用圧力310kPa [gage]以下であること。 (5) 周辺の公衆に対し,著しい放射線被ばくのリスクを与えないこと。ただし,「著しい放射線被ばくのリスク」については,「安全評価審査指 針」によることとする。 	 (ii) 判断基準 想定された事象が生じた場合,炉心の溶融あるいは著しい損傷の おそれがなく,かつ,事象の過程において他の異常状態の原因とな るような2次的損傷が生じなく,さらに放射性物質の放散に対する 障壁の設計が妥当であることを確認する。このことを判断する基準 は以下のとおりである。 a. 炉心は著しい損傷に至ることなく,かつ,十分な冷却が可能で あること。 b. 燃料エンタルピは、「反応度投入事象評価指針」に示された制限 値を超えないこと。 c. 原子炉冷却材圧力バウンダリにかかる圧力は、最高使用圧力で ある8.62MPa[gage]の1.2倍の圧力10.34MPa[gage]以下であること。 d. 原子炉格納容器バウンダリにかかる圧力は、最高使用圧力 310kPa[gage]以下であること。 e. 周辺の公衆に対し、著しい放射線被ばくのリスクを与えないこ と。ただし、「著しい放射線被ばくのリスク」については、「安全 評価審査指針」によることとする。 	

頁		平成 21 年 12 月設置	許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
百 添付書類十 図表: P.10-1-24	平成 21 年 12 月設置許可申請 第 1. 2-2 表 解析において影響緩和のため考慮する主要 (事 故) 分類 機能 構築物,系統 原子炉の緊急停止機能 (スクラム機能) 規御棒及び制御棒駆動 (スクラム機能) 東子炉冷却材圧力バウンダリの過 主蒸気逃がし安全弁 (安全弁としての開格 原子炉冷却材圧力バウンダリの過 主蒸気逃がし安全弁 (安全弁としての開格 原子炉停止後の除熟機能 商圧炉心注水系 東赤気逃がし安全弁 自動減圧系(原子炉 原子炉停止後の除熟機能 商圧炉心注水系 市野心冷却機能 原子炉隔離時冷却系 原子炉隔離時冷却系 高圧炉心注水系	 許可申請 ため考慮する主要な安全機能 構築物,系統又は機器 制御棒及び制御棒駆動系 (スクラム機能) 制御棒及び制御棒駆動系 (未臨界維持機能) 主蒸気逃がし安全弁 (安全弁としての開機能) 残留熱除去系(原子炉停止時冷却モード) 原子炉隔離時冷却系(補給水機能) 高圧炉心注水系 主蒸気逃がし安全弁(手動逃がし機能) 自動減圧系(手動逃がし機能) 低圧注水系(残留熱除去系低圧注水モード) 原子炉隔離時冷却系(炉心冷却機能) 高圧炉心注水系 自動減圧系 	設置法附則第 23 条第 4 項に基づく提出書(補正後) (ii) 事故に対処するために必要な施設 事故に対処するために必要な施設の安全機能のうち,解析に当た って考慮するものを以下に示す。 a. 解析に当たって考慮する主要な安全機能(MS-1) (a) 原子炉の緊急停止機能 制御棒及び制御棒駆動系(スクラム機能) (b) 未臨界維持機能 制御棒及び制御棒駆動系(スクラム機能) (c) 原子炉冷却材圧力バウンダリの過圧防止機能 主蒸気逃がし安全弁(安全弁としての開機能) (d) 原子炉停止後の除熱機能 残留熱除去系(原子炉停止時冷却モード) 原子炉隔離時冷却系(補給水機能) 高圧炉心注水系 主蒸気逃がし安全弁(手動逃がし機能) 自動減圧系(手動逃がし機能)	備考	
	M S – 1	放射性物質の閉じ込め機能,放射 線の遮へい及び放出低減機能	 □ 国 (M/L 示) 原子炉格納容器 原子炉格納容器隔離弁(主蒸気隔離弁を含む) 主蒸気流量制限器 格納容器スプレイ冷却系(残留熱除去系 格納容器スプレイ冷却モード) 原子炉棟 非常用ガス処理系 排気筒(非常用ガス処理系排気管の支持機能) 可燃性ガス濃度制御系 遮へい設備(原子炉一次遮へい壁,原子 炉二次遮へい壁) 	 (e) 炉心冷却機能 低圧注水系(残留熱除去系低圧注水モード) 原子炉隔離時冷却系(炉心冷却機能) 高圧炉心注水系 自動減圧系 (f) 放射性物質の閉じ込め機能,放射線の遮へい及び放出低減機 能 原子炉格納容器 原子炉格納容器隔離弁(主蒸気隔離弁を含む) 	
		工学的安全施設及び原子炉停止系 への作動信号の発生機能	安全保護系 (原子炉緊急停止系作動回路,工学的安 全施設作動回路)	主蒸気流量制限器 格納容器スプレイ冷却系(残留熱除去系格納容器スプレイ冷 却モード)	
		安全上特に重要な関連機能	非常用所内電源系 (非常用ディーゼル発電機(燃料デイタ ンクまで),115V所内用蓄電池,計測制 御用電源設備を含む電力供給設備)	原子炉棟 非常用ガス処理系 排気筒(非常用ガス処理系排気管の支持機能)	
	M S – 2	放射性物質放出の防止機能	気体廃棄物処理系の隔離弁 排気筒(非常用ガス処理系排気管の支持 機能以外)	可燃性ガス濃度制御系 遮へい設備(原子炉一次遮へい壁,原子炉二次遮へい壁)	
	M S — 3	異常状態の把握機能	放射線監視設備の一部(気体廃棄物処理 設備エリア排気モニタ)	(g) 上字的安全施設及び原子炉停止糸への作動信号の発生機能 安全保護系(原子炉緊急停止系作動回路,工学的安全施設作 動回路)	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
		<u>(h)</u> 安全上特に重要な関連機能	
		非常用所内電源系(非常用ディーゼル発電機(燃料デイタン	
		クまで),115V所内用蓄電池,計測制御用電源設備を含む電力供	
		給設備)	
		b. 解析に当たって考慮する主要な安全機能(MS-2)	
		<u>(a)</u> 放射性物質放出の防止機能	
		気体廃棄物処理系の隔離弁	
		排気筒(非常用ガス処理系排気管の支持機能以外)	
		<u>c.</u> 解析に当たって考慮する主要な安全機能(MS-3)	
		<u>(a)</u> 異常状態の把握機能	
		放射線監視設備の一部(気体廃棄物処理設備エリア排気モニ	
		夕)	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	3. 事故解析		
	3.1 序		
	本原子炉施設の安全設計の基本方針の妥当性を確認するため、本原子炉		
	施設において想定する「事故」に対して、その発生原因と事故防止対策及		
	び安全防護機能を説明し、事故経過の解析と結果の評価を行い、判断基準		
	への適合性を検討する		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
		(2) 解析条件	
		各評価事象の解析に当たって考慮する主要な安全機能に関する解析	
		条件を以下に記述する。	
	3.2 原子炉冷却材の喪失又は炉心冷却状態の著しい変化	(i) 原子炉冷却材の喪失又は炉心冷却状態の著しい変化	
	<u>3.2.1</u> 原子炉冷却材喪失	<u>a.</u> 原子炉冷却材喪失	
	3.2.1.1 原 因		
	原子炉の出力運転中に、何らかの原因により原子炉冷却材圧力バウンダ	原子炉の出力運転中に、何らかの原因により原子炉冷却材圧力	
	リを構成する配管あるいはこれに付随する機器等の破損等 <u>を想定した場合</u>	バウンダリを構成する配管あるいはこれに付随する機器等の破損	
	<u>には</u> ,冷却材が系外に流出 <u>する。</u> この場合,冷却水が補給できないと炉心	等 <u>により</u> ,冷却材が系外に流出し,炉心の冷却能力が低下する事	
	の冷却能力が低下し、最も厳しい事態では崩壊熱による燃料の過度の温度	象を想定する。	
	上昇が起こり、核分裂生成物が燃料から放出され、さらにはジルコニウム		
	ー水反応及び水の放射線分解により可燃性ガスが発生する可能性がある。		
	また、格納容器の冷却ができないと格納容器内圧力、温度が過度に上昇		
	する可能性がある。		
	3.2.1.2 事故防止対策及び事故拡大防止対策		
	(1) 事故防止対策		
	LOCAの発生を防止するため,次のような設計及び運転管理上の対策		
	を講じる。		
	a. 配管等の設計に当たっては, 原子炉寿命中の各種の荷重を十分に考		
	慮した厳しい条件を適用する。		
	b. 材料の選定,加工及び配管等の設計・製作は,諸規格及び基準に適		
	合させるようにし、また、十分な品質管理を行う。		
	c. 原子炉冷却材圧力バウンダリを構成する配管等は, 非延性破壊を防		
	止する設計とする。		
	d. さらに,漏えい監視設備による監視によって,破断に進展する前に		
	破損を検知し、適切な処置を講じる。		
	e. 原子炉供用期間中に主要な箇所の検査を行い,その健全性を確認す		
	る。		
	(2) 事故拡大防止対策		
	上記のような事故防止対策にもかかわらず、万一、LOCAが発生し		
	た場合には以下の対策により事故の拡大防止を図る。		
	a. 炉心冷却を妨げるほどの燃料被覆管の破損(大破損)を防止し,ジ		
	ルコニウム-水反応を十分に低く抑え,崩壊熱を長期にわたって除去		
	するためにECCSを設ける。		
	(a) 本原子炉では上述の目的を達成するため,高圧炉心注水系,原子		
	炉隔離時冷却系,自動減圧系及び低圧注水系を設ける。		
	高圧炉心注水系配管(以下「HPCF配管」という。)の両端破		
	断のような冷却材の保有量の低下が最大となる場合でも、冷却材の		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補	Ē
	減少の割には原子炉内の減圧が促進されないため、原子炉が高圧状		
	態下でも注入可能な高圧炉心注水系及び原子炉隔離時冷却系が、原		
	子炉水位低(レベル1.5)又はドライウェル圧力高の信号で起動し		
	て炉心を冷却する。また、高圧炉心注水系及び原子炉隔離時冷却系		
	とは独立して,自動減圧系が原子炉水位低(レベル1)及びドライ		
	ウェル圧力高の両信号を受けてから30秒の時間遅れをもって作動		
	し、原子炉の蒸気をサプレッションチェンバ内のプール水中へ放出		
	することにより原子炉圧力を低下させ、低圧注水系による注水を早		
	期に可能にする。		
	(b) 本原子炉のECCSでは, 圧力容器に接続する配管のいかなる破		
	断面積に対しても原理の異なる系統を多重に、独立して設けて炉心		
	冷却を行うこととし、いかなる単一故障に対しても炉心冷却機能を		
	失わない設計とする。		
	(c) ECCSの電源としては、外部電源がない場合にも3台の非常用		
	ディーゼル発電機によって給電する設計とする。		
	b. LOCAに伴い圧力容器から放出された冷却材及び放射性物質を閉		
	じ込めるため原子炉格納施設を設ける。原子炉格納施設は、圧力抑制		
	形の格納容器とそれを取り囲む原子炉棟等で構成する。		
	(a) 格納容器はLOCA時の内圧上昇に耐える設計とし, その漏えい		
	率を0.4%/d(常温,空気,最高使用圧力の0.9倍の圧力において)		
	以下に設計する。		
	格納容器には、格納容器内圧力及び温度が最高使用圧力及び最高		
	使用温度を超えることを防止するため格納容器スプレイ冷却系を設		
	ける。		
	さらに,事故後格納容器内の水が放射線により分解されて水素と		
	酸素が発生し、ジルコニウム-水反応により生成した水素とともに、		
	徐々に蓄積されて可燃限界に達する可能性があるが、本原子炉では		
	可燃性ガス濃度制御系を設け、可燃限界に達することを防止する。		
	(b) 原子炉棟は事故時にも負圧に保たれるようにし, 換気率を50%/d		
	とする。また、非常用ガス処理系を設け、非常用ガス処理系の排気		
	管を通して放射性物質が大気中に放出される前によう素の除去を高		
	効率で行う。		
	3.2.1.3 事故経過の解析		
	LOCA時のECCSの機能及び性能の確認のため、燃料被覆管温度が		
	最高となるHPCF配管の瞬時両端破断事故の解析を行う。		
	3.2.1.3.1 9×9燃料(A型)を装荷した炉心について		
	(1) 解析条件		
	解析は、次のような仮定を用いて行う。		

E後)	備考

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>a.</u> 原子炉は,事故発生直前まで定格出力の約102%(熱出力	(a) 原子炉は,事故発生直前まで定格出力の約102%(熱出力	
	4,005MW)及び定格炉心流量の90%(47.0×10 ³ t/h)で運転して	4,005MW)及び定格炉心流量の90%(47.0×10 ³ t/h)で運転し	
	いたものとする。また,原子炉圧力の初期値は7.17MPa[gage]とする。	ていたものとする。また,原子炉圧力の初期値は7.17MPa[gage]	
	MCPRの初期値は,実際には通常運転時の熱的制限値(1.22)	とする。MCPRの初期値は、実際には通常運転時の熱的制限	
	よりも小さくなることはないが, 沸騰水型原子炉の <u>LOCA</u> 解析	値(1.22)よりも小さくなることはないが,沸騰水型原子炉の	
	において共通の値として用いられる値, 1.19とする。	<u>原子炉冷却材喪失</u> 解析において共通の値として用いられる値, 1 19とする	記載の適正化
	b 解析に用いる最大線出力変度は 通営運転時の熱的制限値である	(b) 解析に用いる最大線出力密度は 通常運転時の熱的制限値で	
	$_{14}$ 0kW/mの102%であるとする また 燃料抽磨管とペレット問の	(0) 所何に加いる取べ称山乃祖及は、並市定報時の派的所承担で ある44 0kW/mの102%であるとする。また、燃料被覆管とペレッ	
		ト間のギャップ執行法係物は一般時期間中の亦化を考慮して	
	イヤジノ 然凶運床数 は、 然焼効间十の发化を う悪して、 脾竹 柏木	下面のイイソノ窓仏建床数は、窓焼労间中の変化を与慮して、 報転は思た厳レイナを値(※)を用いる	
	と取してりる個を用いる。	一件忉 栢木を取しくりる 恒 <u>(衆)</u> を用いる。	1、衣的 叙恒 を 用いる 件
	<u>C.</u> 原于炉停止後の崩壊恐は、美側7 ークに基づく値に女王宗俗を見込 χ だ χ (C.E. (π 物) χ) χ	(C) 原于炉停止後の崩壊熱は、美側アータに基づく値に女生宗裕 た見込んだず(CEC(亚物) -2) で計算されて使た使用す	秋年17年記を迫加
		を見込んに式 (GE (平均) + 3 σ) ご計算される値を使用する。	
	なお、この式はアクチニドの崩壊熱についても考慮している。	なお、この式はアクチニドの崩壊熱についても考慮している。	
	<u>d</u> . 事故発生と同時に外部電源が喪失し,再循環ポンプ10台は即時にト	(d) 事故発生と同時に外部電源が喪失し,再循環ポンプ10台は即	
	リップするものとする。	時にトリップするものとする。	
	原子炉は、炉心流量急減信号でスクラムするものとする。第3.2.1 -1図に炉心流量急減スクラムの設定値を示す。	原子炉は、炉心流量急減信号でスクラムするものとする。	
	e. ECCS起動信号として, ドライウェル圧力高信号は, 原子炉水位	(e) 非常用炉心冷却系(以下「ECCS」という。) 起動信号とし	記載の適正化
	低(レベル1.5又は1)信号よりも早く出ると考えられるが,保守的に	て,ドライウェル圧力高信号は,原子炉水位低(レベル1.5又は	
	原子炉水位低(レベル1.5又は1)信号によってECCSが起動すると	1) 信号よりも早く出ると考えられるが、保守的に原子炉水位	
	仮定する。	低(レベル1.5又は1)信号によってECCSが起動すると仮定	
		する。	
	f 原子炬停止機能の観点から安全保護系(炬心流量急減スクラム)に	(f) 原子炉停止機能の観点から安全保護系(炉心流量急減スクラ	
		ム) に 単一 故 暗 を 仮 定 す ろ	
	φ 恒心冷却機能の組占からFCCSネットワークに対する最も厳しい	(a) 恒心冷却機能の組占からFCCSネットワークに対する最も	
		(A) がに市場機能の観点からとしてもポティアの人間が多取り 厳しい単一故障を仮定する 真圧恒心注水系配管破断事故の提	記載の演正化
	中 成陸を仮足する。 <u>111 01</u> 配置破断争取の場合の取り取り取り	▲の星も厳しい単一故障け 健全側の真圧恒心注水系に診療す	
	取岸は, 逆主側の同江が七江水水に相电, 37F市川/1 ビル光电機 の 故陪で なる	日の取り取しい手の陸岸の、陸王則の同上が七江小米に相电り る非常田ディーゼル発雪烨のお陪である	
	<u> 11.</u>		
	90。		割料の済まれ
	<u>1. 逃がし女主井</u> については、女主井機能より逃がし井機能が充に作動	(1) 土然或逃加し女生开(以下「逃加し女生开」という。) につい	記載の週上化
	9 るか,女王开機能のみか作動9 ると仮正9 る。女王开の吹田し圧力 は、	(は,女生井機能より逃かし井機能が充に作動するか,女生井 機能のためた新たた)に広たて、広へ台の取出してたけ、記点	
	は、	機能のみか作動すると仮定する。女王井の吹田し圧力は、設定	
	90.15MFa向い但を使用する。	み 左 寺 を ち 慮 し し, <u>美 院 の 女 王 井 機 能 設 足 点</u> よ り 0.15MPa 局 い 値	
	<u>」.</u> 燃料	(J) 燃料 彼復 官 温度 の計算における 燃料 被復 管 と 伶 却 材間 の 熟伝	
	は、以下に示す相関式を用いる <u>、**</u> 。	達除数は、以下に示す相関式を用いる。	
<u>9×9燃料(A型)を装荷した炉心について</u>			

<u>(a)</u> 核沸騰冷却 ボイド率の関数とする相関式 核沸騰冷却 ボイド率の関数とする相関式 核沸騰冷却 ボイド率の関数とする相関式			
(b) 膜沸騰冷却 噴霧流冷却の相関式と修正Bromleyの式をボイ 膜沸騰冷却 噴霧流冷却の相関式と修正Bromleyの式			
ド率の関数として使用する相関式 をボイド率の関数として使用する相関式			
(c) 遷移沸騰冷却 核沸騰と膜沸騰の熱伝達係数を燃料被覆管過熱 遷移沸騰冷却 核沸騰と膜沸騰の熱伝達係数を燃料被覆管			
度で内挿した相関式 過熱度で内挿した相関式			
<u>(d)</u> 蒸気冷却 Dittus-Boelterの式 蒸気冷却 Dittus-Boelterの式			
<u>(e)</u> 噴霧流冷却 Sun-Sahaの式 噴霧流冷却 Sun-Sahaの式			
(f) 濡れによる冷却 濡れた後の熱伝達係数は Andersen のモデルに 濡れによる冷却 濡れた後の熱伝達係数は Andersenのモデ			
基づく。 ルに基づく			
,			
添付書類十 3.2.1.3.2 9×9燃料(B型)を装荷した炉心について 9×9燃料(B型)を装荷した炉心について			
再提: (1) 解析条件			
P.10-3-12 j.燃料被覆管温度の計算における燃料被覆管と冷却材間の熱伝達			
係数は、以下に示す相関式を用いる (8)。			
(a) 核沸騰冷却 ボイド率の関数とする相関式 核沸騰冷却 ボイド率の関数とする相関式 バール			
(b) 膜沸騰冷却 修正 Bromleyの式と Dougall-Rohsenowの 膜沸騰冷却 修正Bromleyの式と Dougall-Rohsenowの式			
(c) 遷移沸騰冷却 核沸騰と膜沸騰の熱伝達係数を燃料被覆管 遷移沸騰冷却 核沸騰と膜沸騰の熱伝達係数を燃料被覆			
過熱度で内挿した相関式 管過熱度で内挿した相関式			
(d) 蒸気冷却 Dittus-Boelterの式 蒸気冷却 Dittus-Boelterの式			
<u>k. ジルコニウム-水反応</u> による燃料被覆管の酸化量は, Baker-Just (k) 燃料被覆管と冷却水又は水蒸気との化学反応(以下「ジルコ)記載の適正化			
の式を用いて計算する。 ニウムー水反応」という。)による燃料被覆管の酸化量は、Baker			
ーJustの式を用いて計算する。			

頁	平成 21 年 12	2月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類十	なお,解析に用いた主要計算 第3.2.1-1表 原子炉冷	算条件を <u>第3.2.1-1表</u> に示す。 う却材喪失解析主要計算条件	なお,解析に用いた主要計算条件を <u>以下</u> に示す。	
凶表:				
P. 10-3-103	項 日	使用した数値 字枚出力の約102% (4 005MW)		
	原于产款山力	定福山方·07年910276(4,003mm)		
	最大線出力密度	44.0kW/m×1.02		
	炉心流量	定格流量の90%(47.0×10 ³ t/h)		
	原子炉圧力	7.17MPa[gage]		
	炉心入口エンタルピ	1.23MJ/kg	炉心入口エンタルピ 1.23MJ/kg	
	高圧炉心注水系流量(定格值)	727m ³ /h(ポンプ1台当たり,0.69MPa[dif] において) *	高圧炉心注水系流量(定格値) 727m ³ /h(ポンプ1台当たり,	
	低圧注水系流量(定格值)	954m ³ /h(ポンプ1台当たり,0.28MPa[dif] において) *	原子炉圧力容器(以下「圧力容器」 という。)と水源との差圧0.69MPa	
	原子炉隔離時冷却系流量(定格值)	182m ³ /h(ポンプ1台当たり, 8.12~1.03 MPa[dif]において)*	において) 低圧注水系流量(定格値) 954m ³ /b(ポンプ1台当たり	
	炉心流量急減(スクラム)設定点	第3.2.1-1図	554m/m (ホンクイロヨルワ), 圧力容器と水源との差圧0.28MPa	
	原子炉水位低(主蒸気隔離弁閉止,高 圧炉心注水系,原子炉隔離時冷却系(炉 心冷却機能)及び非常用ディーゼル発 電機(区分Ⅱ及びⅢ)起動)設定点	ドライヤスカート下端から-204cm (レベル1.5)	において) 原子炉隔離時冷却系流量(定格値) 182m ³ /h(ポンプ1台当たり, 圧力容器と水源との差圧8.12~	
	原子炉水位低(低圧注水系及び非常用 ディーゼル発電機(区分I)起動,自 動減圧系作動)設定点	ドライヤスカート下端から-288cm (レベル1)	1.03MPaにおいて) 炉心流量急減(スクラム)設定点 <u>第3図</u>	
	 ※ MPa[dif]: 圧力容器と水源との差圧 		原子炉水位低(主蒸気隔離弁閉止,高圧炉心注水系,原子炉 隔離時冷却系(炉心冷却機能)及び非常用ディーゼル発電機	
	(2) 解析专注		 (区分Ⅱ及びⅢ)起動)設定点 ドライヤスカート下端から -204cm (レベル1.5) 原子炉水位低(低圧注水系及び非常用ディーゼル発電機(区分I)起動,自動減圧系作動)設定点 ドライヤスカート下端から -288cm (レベル1) 	
	(2) 所切力伝 解析は、「1.3 解析に使用す の解析コード ⁽⁴⁾⁽⁵⁾⁽⁶⁾ を用いて	「る計算プログラム」に述べた次の 〔行う。	三つ	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	a. LAMB : 短期間熱水力過渡変化解析コード		
	b. SCAT : 単チャンネル熱水力解析コード		
	c. SAFER:長期間熱水力過渡変化解析コード		
	事故後の熱水力過渡変化が急激なため、LAMB、SCATを用いて		
	事故直後の炉心流量変化,限界出力変化等を解析する。その後の長期間		
	の原子炉の圧力,水位の変化及び炉心のヒートアップについては,SA		
	FERを用いて評価する。		
	以上の解析の流れ図を第3.2.1-2図に示す。		
	(3) 解析結果		
	a . 炉心流量, 原子炉圧力, 原子炉水位及び燃料被覆管温度の変化		
	HPCF配管が両端破断すると、高圧炉心注水スパージャから破断		
	口に至る流路のうちで面積の最も小さい高圧炉心注水スパージャノズ		
	ル部において臨界流が生じる。		
	事故と同時に外部電源の喪失を仮定すると、再循環ポンプの停止に		
	より炉心流量は急激に減少する。		
	炉心流量の急激な減少により、MCPRは、事故後約0.9秒で1.07		
	を下回り、燃料集合体の上部から5番目のスペーサ位置まで沸騰遷移		
	が生じる。これに伴い、燃料被覆管から冷却材への熱伝達係数が低く		
	なり燃料被覆管の温度が上昇する。しかし、約2.3秒後に炉心流量急減		
	信号が発生して原子炉がスクラムするため、出力が低下し燃料被覆管		
	の温度上昇は短期間で収まる。		
	一方, 炉心シュラウド内水位は, 約58秒後から低下し始めるが, 原		
	子炉水位低(レベル1.5)信号で起動した原子炉隔離時冷却系が事故後		
	約124秒で注水を開始し, さらにはドライウェル圧力高信号及び原子炉		
	水位低(レベル1)信号により自動減圧系が事故後約168秒で作動して		
	原子炉圧力を低下させ,原子炉水位低(レベル1)信号で起動した低		
	圧注水系2系列が約353秒で注水を開始する。炉心シュラウド内水位		
	は、有効燃料棒頂部を下回ることはなく、炉心は冠水維持される。こ		
	のため、炉心露出による燃料被覆管の温度上昇は起こらない。すなわ		
	ち、燃料被覆管温度は、事故直後の沸騰遷移に伴う温度上昇を上回る		
	ことはない。		
	本事故時における炉心流量の時間変化を第3.2.1-3図(1)に,原子炉		
	水位及び原子炉圧力の時間変化を第3.2.1-4図(1)及び第3.2.1-5図		
	(1)に示す。また,燃料被覆管最高温度を与える位置における熱伝達係		
	数の時間変化を第3.2.1-6図(1)に,燃料被覆管温度の時間変化を第		
	3.2.1-7図(1)に示す。この図から分かるとおり本事故時の燃料被覆管		
	最高温度は、約600℃である。		
	b. 燃料被覆管の破裂と酸化		
	燃料棒の破裂は,事故後燃料被覆管の温度が上昇して燃料被覆管の		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	内圧による周方向応力がその温度における引張強さを超えた時点で発		
	生する。第3.2.1-8図に燃料棒に破裂が発生する時点の燃料被覆管温		
	度と燃料被覆管応力の関係を示す。		
	本原子炉の燃料棒では、HPCF配管両端破断時における燃料被覆		
	管温度は約600℃以下であり、一方、計算される最大内外圧差は約		
	4.1MPaとなり,この時の周方向応力は約28N/mm ² であるので,第3.2.1		
	-8図に示す被ばくを評価するために保守的に破裂を判断する曲線を		
	使用しても、LOCA時に燃料棒の破裂は発生しない。		
	燃料被覆管の酸化層厚みの増加は、燃料被覆管温度が低いため極め		
	て小さく、また、全燃料被覆管のジルコニウム-水反応割合は、無視		
	し得る程度である。		
	c. 解析結果のまとめ		
	LOCA時に最も厳しい単一故障を仮定したときに燃料被覆管温度		
	が最も高くなるのは、HPCF配管の両端破断の場合であり、燃料被		
	覆管最高温度は約600℃である。		
	燃料被覆管の酸化層厚みの増加は極めて小さいので、燃料被覆管の		
	延性が失われることはない。また、破裂の発生する燃料棒はなく、全		
	燃料被覆管のジルコニウムー水反応割合は無視し得る程度である。		
	また、長期にわたっての長半減期核種の崩壊熱の除去は、原子炉隔		
	離時冷却系を除くECCSのうちいずれか1台のポンプが作動すれば		
	確保される。		
	また, HPCF配管の部分破断又はその他の各種配管破断の場合は,		
	燃料被覆管最高温度がHPCF配管の両端破断の解析結果に包含さ		
	れている。		
	これらの解析は、事故と同時に外部電源が喪失したとして行ってい		
	るが、事故時に外部電源が喪失しない場合も、これらの解析結果に包		
	含されている。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	3.2.1.3.2 9×9燃料(B型)を装荷した炉心について		
	(1) 解析条件		
	解析は、次のような仮定を用いて行う。		
	a. 原子炉は, 事故発生直前まで定格出力の約102% (熱出力4,005MW)		
	及び定格炉心流量の90%(47.0×10 ³ t/h)で運転していたものとする。		
	また,原子炉圧力の初期値は7.17MPa[gage]とする。MCPRの初期		
	値は,実際には通常運転時の熱的制限値(1.22)よりも小さくなるこ		
	とはないが、沸騰水型原子炉のLOCA解析において共通の値として		
	用いられる値, 1.19とする。		
	b. 解析に用いる最大線出力密度は,通常運転時の熱的制限値である		
	44.0kW/mの102%であるとする。また,燃料被覆管とペレット間の		
	ギャップ熱伝達係数 ⁽⁷⁾ は、燃焼期間中の変化を考慮して、解析結果		
	を厳しくする値を用いる。		
	c. 原子炉停止後の崩壊熱は、実測データに基づく値に安全余裕を見込		
	んだ式(G E (平均)+3σ) ⁽²⁾ で計算される値を使用する。		
	なお、この式はアクチニドの崩壊熱についても考慮している。		
	d. 事故発生と同時に外部電源が喪失し,再循環ポンプ10台は即時にト		
	リップするものとする。		
	原子炉は、炉心流量急減信号でスクラムするものとする。第		
	3.2.1-1図に炉心流量急減スクラムの設定値を示す。		
	e. ECCS起動信号として, ドライウェル圧力高信号は, 原子炉水位		
	低(レベル1.5又は1)信号よりも早く出ると考えられるが,保守的に		
	原子炉水位低(レベル1.5又は1)信号によってECCSが起動すると		
	仮定する。		
	f. 原子炉停止機能の観点から安全保護系(炉心流量急減スクラム)に		
	単一故障を仮定する。		
	g. 炉心冷却機能の観点からECCSネットワークに対する最も厳しい		
	単一故障を仮定する。HPCF配管破断事故の場合の最も厳しい単一		
	故障は、健全側の高圧炉心注水系に給電する非常用ディーゼル発電機		
	の故障である。		
	h. 破断口からの冷却材の流出は,均質臨界流モデル ⁽³⁾ を用いて計算		
	する。		
	i. 逃がし安全并については,安全并機能より逃がし弁機能が先に作動		
	するが、安全井磯能のみが作動すると仮定する。安全弁の吹出し圧力		
	は、設定誤差等を考慮して、添付書類八の第4.1-2表に示した圧力よ		
	J. 燃料 彼復 官 温度 の計算 における 燃料 破復 管 と 冷却 材間 の 熱伝 達係 数		
	は,以下に示す相関式を用いる [、] 。		

頁	平成	x 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(a) 核沸騰冷却	ボイド率の関数とする相関式		
	(b) 膜沸騰冷却	修正Bromleyの式とDougall-Rohsenowの式を		
		ボイド率で内挿した相関式		
	(c) 遷移沸騰冷却	核沸騰と膜沸騰の熱伝達係数を燃料被覆管過熱		
		度で内挿した相関式		
	(d) 蒸気冷却	Dittus-Boelterの式		
	k. ジルコニウム-水	反応による燃料被覆管の酸化量は, Baker-Justの		
	式を用いて計算する。	0		
	なお、解析に用い	た主要計算条件を第3.2.1-1表に示す。		
	(2) 解析方法			
	解析は,「1.3 解析	に使用する計算プログラム」に述べた次の三つの		
	解析コード (8) を用いて	て行う。		
	a. LABEL	: 短期間熱水力過渡変化解析コード		
	b. FRANCESC.	A:単チャンネル熱水力解析コード		
	c. SALUTE	:長期間熱水力過渡変化解析コード		
	事故後の熱水力過渡	変化が急激なため、LABEL、FRANCES		
	CAを用いて事故直後	の炉心流量変化,限界出力変化等を解析する。そ		
	の後の長期間の原子炉	の圧力、水位の変化及び炉心のヒートアップにつ		
	いては、SALUTE	を用いて評価する。		
	以上の解析の流れ図	を第3.2.1-2図に示す。		
	(3) 解析結果			
	a. 炉心流量, 原子炉	王力,原子炉水位及び燃料被覆管温度の変化		
	HPCF配管が両	端破断すると、高圧炉心注水スパージャから破断		
	口に至る流路のうち	で面積の最も小さい高圧炉心注水スパージャノズ		
	ル部において臨界流法	が生じる。		
	事故と同時に外部	電源の喪失を仮定すると、再循環ポンプの停止に		
	より炉心流量は急激	に減少する。		
	炉心流量の急激な	減少により, MCPRは, 事故後約0.8秒で1.07		
	を下回り、燃料集合	体の上部から5番目のスペーサ位置まで沸騰遷移		
	が生じる。これに伴	い、燃料被覆管から冷却材への熱伝達係数が低く		
	なり燃料被覆管の温	度が上昇する。しかし、約2.3秒後に炉心流量急		
	減信号が発生して原	子炉がスクラムするため、出力が低下し燃料被覆		
	管の温度上昇は短期	間で収まる。		
	一方, 炉心シュラ	ウド内水位は、約72秒後から低下し始めるが、原		
	子炉水位低(レベル	1.5) 信号で起動した原子炉隔離時冷却系が事故		
	後約121秒で注水を閉	鼎始し, さらにはドライウェル圧力高信号及び原		
	子炉水位低(レベル	1) 信号により自動減圧系が事故後約168秒で作		
	動して原子炉圧力を	低下させ,原子炉水位低(レベル1)信号で起動		
	した低圧注水系2系	列が約344秒で注水を開始する。炉心シュラウド		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	内水位は、有効燃料棒頂部を下回ることはなく、炉心は冠水維持され		
	る。このため、炉心露出による燃料被覆管の温度上昇は起こらない。		
	すなわち、燃料被覆管温度は、事故直後の沸騰遷移に伴う温度上昇を		
	上回ることはない。		
	本事故時における炉心流量の時間変化を第3.2.1-3図(2)に,原子炉		
	水位及び原子炉圧力の時間変化を第3.2.1-4図(2)及び第3.2.1-5図(2)		
	に示す。また、燃料被覆管最高温度を与える位置における熱伝達係数		
	の時間変化を第3.2.1-6図(2)に,燃料被覆管温度の時間変化を第		
	3.2.1-7図(2)に示す。この図から分かるとおり本事故時の燃料被覆管		
	最高温度は,約594℃である。		
	b. 燃料被覆管の破裂と酸化		
	燃料棒の破裂は、事故後燃料被覆管の温度が上昇して燃料被覆管の		
	内圧による周方向応力がその温度における引張強さを超えた時点で発		
	生する。第3.2.1-8図に燃料棒に破裂が発生する時点の燃料被覆管温		
	度と燃料被覆管応力の関係を示す。		
	本原子炉の燃料棒では, HPCF配管両端破断時における燃料被覆		
	管温度は約594℃以下であり、一方、計算される最大内外圧差は約		
	3.6MPaとなり, この時の周方向応力は約25N/mm ² であるので, 第		
	3.2.1-8図に示す被ばくを評価するために保守的に破裂を判断する曲		
	線を使用しても、LOCA時に燃料棒の破裂は発生しない。		
	燃料被覆管の酸化層厚みの増加は、燃料被覆管温度が低いため極め		
	て小さく,また,全燃料被覆管のジルコニウム-水反応割合は,無視		
	し得る程度である。		
	c. 解析結果のまとめ		
	LOCA時に最も厳しい単一故障を仮定したときに燃料被覆管温度		
	が最も高くなるのは、HPCF配管の両端破断の場合であり、燃料被		
	覆管最高温度は約594℃である。		
	燃料被覆管の酸化層厚みの増加は極めて小さいので,燃料被覆管の		
	延性が失われることはない。また、破裂の発生する燃料棒はなく、全		
	燃料被覆管のジルコニウム-水反応割合は無視し得る程度である。		
	また、長期にわたっての長半減期核種の崩壊熱の除去は、原子炉隔		
	離時冷却系を除くECCSのうちいずれか1台のポンプが作動すれば		
	確保される。		
	また, HPCF配管の部分破断又はその他の各種配管破断の場合は,		
	燃料被覆管最高温度がHPCF配管の両端破断の解析結果に包含され		
	ている。		
	これらの解析は、事故と同時に外部電源が喪失したとして行ってい		
	るが、事故時に外部電源が喪失しない場合も、これらの解析結果に包		
	含されている。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	3.2.1.4 判断基準への適合性の検討		
	本事故に対する判断基準は、次のとおりである。		
	(1) 「1.1.2.3 判断基準」の(1)の基準を満足すること。		
	(2) ECCSの設計は、その機能及び性能が「ECCS性能評価指針」に		
	示されている以下の基準を満足すること。		
	a. 燃料被覆の温度の計算値の最高値は、1,200℃以下であること。		
	b. 燃料被覆の化学量論的酸化量の計算値は,酸化反応が著しくなる前		
	の被覆管厚さの15%以下であること。		
	c. 炉心で燃料被覆及び構造材が水と反応するに伴い発生する水素の量		
	は、格納容器の健全性確保の見地から、十分低い値であること。		
	d. 燃料の形状の変化を考慮しても,崩壊熱の除去が長期間にわたって		
	行われることが可能であること。		
	「3.2.1.3 事故経過の解析」で示したように、燃料被覆管の温度の最高		
	値は 1,200℃以下であり、破裂の発生する燃料棒はなく、燃料被覆管の酸		
	化層厚みの増加量は酸化反応が著しくなる前の燃料被覆管厚さの 15%以下		
	である。		
	また、全燃料被覆管のジルコニウムー水反応割合は無視し得る程度であ	✓ 比較表 P.122 参照	
	るため、反応に伴い発生する水素の量は格納容器の健全性確保の見地から		
	十分低い。		
	長期間にわたっての崩壊熱の除去は、原子炉隔離時冷却系を除くECC		
	Sのうちいずれか1台のポンプが作動すれば確保される。		
	したがって,(1)及び(2)は満足される。		
	1 · · · · · · · · · · · · · · · · · · ·		Ļ

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>3.2.2</u> 原子炉冷却材流量の喪失	<u>b.</u> 原子炉冷却材流量の喪失	
	3.2.2.1 原 因		
	原子炉の出力運転中に、電源母線の故障等の原因に <u>より、</u> 再循環ポンプ	原子炉の出力運転中に、電源母線の故障等の原因に <u>よって</u> 再循	
	が同時に全台とも停止すると想定した場合には、炉心流量が、定格出力時	環ポンプが同時に全台とも停止する <u>ことにより</u> ,炉心流量が,定	
	の流量から自然循環流量にまで大幅に低下して、炉心の冷却能力が低下し、	格出力時の流量から自然循環流量にまで大幅に低下 <u>する事象を想</u>	
	<u>燃料の温度が上昇する可能性があ</u> る。	定する。	
	3.2.2.2 事故防止対策及び事故拡大防止対策		
	(1) 事故防止対策		
	原子炉冷却材流量の喪失の発生を防止するため、次のような設計及び		
	運転管理上の対策を講じる。		
	a. 再循環ポンプ10台は、単一の常用高圧母線の故障で全台の再循環ポ		
	ンプが同時に停止しないよう、5台ずつ2系統の常用高圧母線に接続		
	する。原子炉通常運転中、この母線は発電機側の電源から給電される		
	が,発電機負荷開閉器が開いた場合にも,500kV送電線側から給電さ		
	れる構成とする。		
	b. 再循環ポンプの駆動電動機に電源を供給する2台の再循環ポンプM		
	Gセットは、それぞれ5台の再循環ポンプと接続され、再循環ポンプ		
	MGセットの単一の故障で全台の再循環ポンプが同時に停止しない構		
	成とする。		
	c. 原子炉供用期間中に主要な箇所の検査を行い, その健全性を確認す		
	(2) 事故拡大防止対策		
	上記のような事故防止対策にもかかわらず、万一、原子炉冷却材流量		
	の喪失が発生した場合でも、負の減速材ポイド係数により原子炉出力は		
	減少し、原子炉スクラム及びタービントリップにより終結するので、そ		
	の後事政が拡大するおそれはない。		
	3.2.2.3 事故経過の解析		
	3.2.2.3.1 9×9燃料(A型)を装荷した炉心について		
	(1) 解析条件		
	<u>a.</u> 原子炉は,事故発生直前まで定格出力の約102% (熱出力4,005MW)	(a) 原子炉は,事故発生直前まで定格出力の約102%(熱出力)	
	及び定格炉心流量の90%(47.0×10 ³ t/h)で運転していたものとする。	4,005MW)及び定格炉心流量の90%(47.0×10 ³ t/h)で運転し	
	また、原子炉圧力の初期値は7.17MPa[gage]とする。MCPRの初期	ていたものとする。また,原子炉圧力の初期値は7.17MPa[gage]	
	値は実際には通常運転時の熱的制限値(1.22)よりも小さくなること	とする。MCPRの初期値は実際には通常運転時の熱的制限値	
	はないが, <u>3.2.1 原子炉冷却材喪失</u> 」で用いているものと同じ値を	(1.22) よりも小さくなることはないが, <u>「(i) 原子炉冷却材</u>	
	用いることとし、1.19とする。	の喪失又は炉心冷却状態の著しい変化、a.原子炉冷却材喪失」	
		で用いているものと同じ値を用いることとし, 1.19とする。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	 <u>b.</u>解析に用いる最大線出力密度は、通常運転時の熱的制限値である 44.0kW/mの102%とする。また、燃料被覆管とペレット間のギャッ プ熱伝達係数⁽¹⁾は、燃焼期間中の変化を考慮して、解析結果を厳しく する値を用いる。 <u>c.</u>再循環ポンプ10台の駆動電源が、同時に喪失するものと仮定する。 	 (b) 解析に用いる最大線出力密度は、通常運転時の熱的制限値である44.0kW/mの102%とする。また、燃料被覆管とペレット間のギャップ熱伝達係数は、燃焼期間中の変化を考慮して、解析結果を厳しくする値(※)を用いる。 (c) 再循環ポンプ10台の駆動電源が、同時に喪失するものと仮定する。 	代表的数値を用いる解 析条件へ注記を追加
	<u>d</u> . 再循環ホンノ及び同駆動電動機の定格炉心流重に対応する回転速度 からの回転速度半減時間の設計値は約0.7秒であるが、本解析では、 厳しめの結果を与えるよう10%小さな値(0.62秒)を用いる。	(d) 再循環ホンノ及び同駆動電動機の足格炉心流重に対応する回転速度からの回転速度半減時間の設計値は約0.7秒であるが、本解析では、厳しめの結果を与えるよう10%小さな値(0.62秒)を用いる。	
	<u>e.</u> スクラム <u>反応度</u> 曲線は厳しめの結果を与えるよう選定することとし, <u>添付書類八の「3.4.1(4) a.反応度」で定義された</u> 設計用スクラム <u>反</u> <u>応度</u> 曲線を用いる。	<u>(e)</u> スクラム曲線は厳しめの結果を与えるよう選定することとし, 設計用スクラム曲線 <u>(第2図)</u> を用いる。	記載の適正化
	<u>f.</u> 減速材ボイド係数及びドップラ係数は,燃焼期間中の変化を考慮して解析結果を厳しくする値を用いる。減速材ボイド係数 <u>については,</u> 添付書類八の第3.4.1-5図(1)の第1サイクル初期時点の値の0.9倍の 値を,ドップラ係数については,添付書類八の第3.4.1-3図(1)の第1 サイクル初期時点の値の1.1倍の値を用いる。	(f) 減速材ボイド係数及びドップラ係数は,燃焼期間中の変化を 考慮して解析結果を厳しくする値(※)を用いる。減速材ボイ ド係数 <u>は、9×9燃料(A型)を装荷した炉心については第1サ</u> イクル初期時点の値の0.9倍の値を、9×9燃料(B型)を装荷 した炉心については平衡サイクル初期時点の値の0.9倍の値を用 いる。また、ドップラ係数は、9×9燃料(A型)を装荷した炉 心については第1サイクル初期時点の値の1.1倍の値を、9×9 燃料(B型)を装荷した炉心については平衡サイクル初期時点の 値の1.1倍の値を用いる。	代表的数値を用いる解 析条件へ注記を追加
	 g. 原子炉は、炉心流量急減信号によりスクラムするものとする。第 3.2.1-1図に炉心流量急減スクラムの設定値を示す。 h. 原子炉停止機能の観点から安全保護系(炉心流量急減スクラム)に 単一故障を仮定する。 i. 逃がし安全弁については、安全弁機能より逃がし弁機能が先に作動 するが、安全弁機能のみが作動すると仮定する。安全弁の吹出し圧力 は、設定誤差等を考慮して、<u>添付書類八の第4.1-2表に示した圧力</u>よ り0.15MPa高い値を使用する。 j. タービンバイパス弁については、厳しめの結果を与えるよう不作動 を仮定する。 (2) 解析方法 解析は、「1.3 解析に使用する計算プログラム」に述べた次の三つの 解析コード⁽⁴⁾⁽⁵⁾⁽⁶⁾⁽⁹⁾⁽¹⁰⁾を用いて行う。 a. REDY : プラント動特性解析コード b. SCAT : 単チャンネル熱水力解析コード c. SAFER:長期間熱水力過渡変化解析コード 以上の解析の流れ図を第3.2.2-1図に示す。 	 (g) 原子炉は、炉心流量急減信号によりスクラムするものとする。 (h) 原子炉停止機能の観点から安全保護系(炉心流量急減スクラム)に単一故障を仮定する。 (i) 逃がし安全弁については、安全弁機能より逃がし弁機能が先に作動するが、安全弁機能のみが作動すると仮定する。安全弁の吹出し圧力は、設定誤差等を考慮して、実際の安全弁機能設定点より0.15MPa高い値を使用する。 (j) タービンバイパス弁については、厳しめの結果を与えるよう不作動を仮定する。 	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(3) 解析結果		
	第3.2.2-2図(1)に原子炉冷却材流量の喪失時の応答を示す。再循環ポ		
	ンプが同時に全台停止すると炉心流量は急激に減少する。炉心流量の急		
	減によって、ボイド量が増加して炉心に負の反応度が投入される。また、		
	約2.0秒後には炉心流量急減信号が発生して、原子炉はスクラムするた		
	め、中性子束及び表面熱流束は、初期値を超えることはない。		
	一方、炉心流量の急減によるボイドの増加で、原子炉水位は上昇し、		
	約3.1秒で原子炉水位高(レベル8)によるタービントリップが起こる。		
	原子炉圧力は、タービントリップにより上昇するが、原子炉スクラムと		
	逃がし安全弁の安全弁機能の作動により、約8.22MPa[gage]に抑えられ		
	る。		
	炉心流量の急激な減少により、MCPRは、事故後約1.1秒で1.07を		
	下回り,燃料集合体の上部から4番目のスペーサ位置まで沸騰遷移が生		
	じる。これに伴い、燃料被覆管から冷却材への熱伝達係数が低くなり燃		
	料被覆管温度が上昇する。しかし,原子炉スクラムによる出力の低下に		
	より燃料被覆管の温度上昇は短期間で収まる。		
	第3.2.2-3図(1)に燃料被覆管最高温度を与える位置における温度変化		
	を示すが、本事故時の燃料被覆管最高温度は、約569℃である。		
	燃料棒の破裂は,事故後燃料被覆管の温度が上昇して燃料被覆管の内		
	圧による周方向応力がその温度における引張強さを超えた時点で発生す		
	る。		
	本事故における燃料被覆管温度は、約569℃以下である。一方、本原		
	子炉の燃料棒では,事故期間中,外圧が内圧より高目に維持されるので,		
	第3.2.1-8図から明らかなように燃料被覆管の内圧による周方向応力に		
	より燃料棒に破裂が生じることはない。		
	また, 燃料被覆管の酸化層厚みの増加は, 燃料被覆管温度が低いため		
	極めて小さい。		
	解析結果に示すように事象は収束する。その後は,原子炉スクラム(主		
	蒸気隔離弁閉)時の原子炉停止手順に従い、減圧・降温を行い、冷態停		
	止状態に移行することができる。		
	3.2.2.3.2 9×9燃料(B型)を装荷した炉心について		
	(1) 解析条件		
	a. 原子炉は, 事故発生直前まで定格出力の約102% (熱出力4,005MW)		
	及び定格炉心流量の90%(47.0×10 ³ t/h)で運転していたものとする。		
	また, 原子炉圧力の初期値は7.17MPa[gage]とする。MCPRの初期		
	値は実際には通常運転時の熱的制限値(1.22)よりも小さくなること		
	はないが、「3.2.1 原子炉冷却材喪失」で用いているものと同じ値を		
	用いることとし、1.19とする。		
	b. 解析に用いる最大線出力密度は,通常運転時の熱的制限値である		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	44.0kW/mの102%とする。また,燃料被覆管とペレット間のギャッ		
	プ熱伝達係数 ⁽⁷⁾ は、燃焼期間中の変化を考慮して、解析結果を厳し		
	くする値を用いる。		
	c. 再循環ポンプ10台の駆動電源が,同時に喪失するものと仮定する。		
	d. 再循環ポンプ及び同駆動電動機の定格炉心流量に対応する回転速度		
	からの回転速度半減時間の設計値は約0.7秒であるが、本解析では、		
	厳しめの結果を与えるよう10%小さな値(0.62秒)を用いる。		
	e. スクラム反応度曲線は厳しめの結果を与えるよう選定することとし,		
	添付書類八の「3.4.1(4) a.反応度」で定義された設計用スクラム反		
	応度曲線を用いる。		
	f. 減速材ボイド係数及びドップラ係数は,燃焼期間中の変化を考慮し		
	て解析結果を厳しくする値を用いる。減速材ボイド係数については、		
	添付書類八の第3.4.1-5図(2)の平衡サイクル初期時点の値の0.9倍の		
	値を, ドップラ係数については, 添付書類八の第3.4.1-3図(3)の平衡		
	サイクル初期時点の値の1.1倍の値を用いる。		
	g. 原子炉は、炉心流量急減信号によりスクラムするものとする。第		
	3.2.1-1図に炉心流量急減スクラムの設定値を示す。		
	h. 原子炉停止機能の観点から安全保護系(炉心流量急減スクラム)に		
	単一故障を仮定する。		
	i. 逃がし安全弁については,安全弁機能より逃がし弁機能が先に作動		
	するが、安全弁機能のみが作動すると仮定する。安全弁の吹出し圧力		
	は,設定誤差等を考慮して,添付書類八の第4.1-2表に示した圧力よ		
	り0.15MPa高い値を使用する。		
	j. タービンバイパス弁については, 厳しめの結果を与えるよう不作動		
	を仮定する。		
	(2) 解析方法		
	解析は、「1.3 解析に使用する計算プログラム」に述べた次の三つの		
	解析コード ^{(8) (11)} を用いて行う。		
	a. BANDIX :プラント動特性解析コード		
	b. FRANCESCA:単チャンネル熱水力解析コード		
	c. SALUTE :長期間熱水力過渡変化解析コード		
	以上の解析の流れ図を第3.2.2-1図に示す。		
	(3) 解析結果		
	第3.2.2-2図(2)に原子炉冷却材流量の喪失時の応答を示す。再循環ポ		
	ンプが同時に全台停止すると炉心流量は急激に減少する。炉心流量の急		
	減によって,ボイド量が増加して炉心に負の反応度が投入される。また,		
	約2.2秒後には炉心流量急減信号が発生して,原子炉はスクラムするた		
	め、中性子束及び表面熱流束は、初期値を超えることはない。		
	一方, 炉心流量の急減によるボイドの増加で, 原子炉水位は上昇し,		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	約3.1秒で原子炉水位高(レベル8)によるタービントリップが起こる。		
	原子炉圧力は、タービントリップにより上昇するが、原子炉スクラムと		
	逃がし安全弁の安全弁機能の作動により、約8.21MPa[gage]に抑えられ		
	る。		
	炉心流量の急激な減少により、MCPRは、事故後約1.0秒で1.07を		
	下回り、燃料集合体の上部から3番目のスペーサ位置まで沸騰遷移が生		
	じる。これに伴い、燃料被覆管から冷却材への熱伝達係数が低くなり燃		
	料被覆管温度が上昇する。しかし、原子炉スクラムによる出力の低下に		
	より燃料被覆管の温度上昇は短期間で収まる。		
	第3.2.2-3図(2)に燃料被覆管最高温度を与える位置における温度変化		
	を示すが、本事故時の燃料被覆管最高温度は、約565℃である。		
	燃料棒の破裂は、事故後燃料被覆管の温度が上昇して燃料被覆管の内		
	圧による周方向応力がその温度における引張強さを超えた時点で発生す		
	る。		
	本事故における燃料被覆管温度は、約565℃以下である。一方、本原		
	子炉の燃料棒では、事故期間中、外圧が内圧より高目に維持されるので、		
	第3.2.1-8図から明らかなように燃料被覆管の内圧による周方向応力に		
	より燃料棒に破裂が生じることはない。		
	また、燃料被覆管の酸化層厚みの増加は、燃料被覆管温度が低いため		
	極めて小さい。		
	解析結果に示すように事象は収束する。その後は、原子炉スクラム		
	(主蒸気隔離弁閉)時の原子炉停止手順に従い、減圧・降温を行い、冷		
	態停止状態に移行することができる。		
	3.2.2.4 判断基準への適合性の検討		
	本事故に対する判断基準は、「1.1.2.3 判断基準」の(1)、(3)である。		
	(1) 「1.1.2.3 判断基準」の(1)に対する適合性について		
	「ECCS性能評価指針」の以下の基準を準用する。		
	a. 燃料被覆の温度の計算値の最高値は、1,200℃以下であること。		
	b. 燃料被覆の化学量論的酸化量の計算値は,酸化反応が著しくなる前		
	の被覆管厚さの15%以下であること。		
	「3.2.2.3 事故経過の解析」で示したように,燃料被覆管の温度の最		
	高値は 1,200℃以下であり、破裂の発生する燃料棒はなく、燃料被覆管		
	の酸化層厚みの増加量は酸化反応が著しくなる前の被覆管厚さの 15%以		
	下であるので、炉心冷却能力が失われることはない。したがって、		
	「1.1.2.3 判断基準」の(1)は満足される。		
	(2) 「1.1.2.3 判断基準」の(3)に対する適合性について		
	原子炉圧力は,約8.22MPa[gage],原子炉冷却材圧力バウンダリにか		
	かる圧力は,約8.30MPa[gage]まで上昇するにとどまるので,最高使用		
	圧力の1.2倍の圧力を十分下回る。したがって「1.1.2.3 判断基準」		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	の(3)は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	3.3 反応度の異常な投入又は原子炉出力の急激な変化	(ii) 反応度の異常な投入又は原子炉出力の急激な変化	
	<u>3.3.1</u> 制御棒落下	<u>a.</u> 制御棒落下	
	3.3.1.1 原 因		
	原子炉が臨界又は臨界近傍にあるときに、制御棒駆動軸から分離した制	原子炉が臨界又は臨界近傍にあるときに、制御棒駆動軸から分	
	御棒が炉心から落下し、急激な反応度投入と出力分布変化が生じる。	離した制御棒が炉心から落下し、急激な反応度投入と出力分布変化が生じる事象を想定する	
	3 3 1 2 事故防止対策及び事故拡大防止対策		
	(1) 事故防止対策		
	制御榛茲下の発生を防止するため次のようた設計及び運転管理上の対		
	策を講じる。		
	a. 制御棒と中空ピストンは、制御棒と制御棒駆動機構の結合を回転し		
	ない限り分離しない構造(バイオネットカップリング)とし、必要な		
	場合以外に分離することがない設計とする。		
	b. 制御棒及びこれと結合した中空ピストンは、十分な自重により駆動		
	機構のボールナットに着座し、必要な場合以外に駆動機構から分離し		
	て制御棒が炉心内にとどまり得ない設計とする。すなわち、制御棒ブ		
	レードとチャンネルボックスの間には十分な間隙を設け、かつ、ブ		
	レードにはローラを取り付けるので、ブレードとチャンネルボックス		
	は直接接触することなく、その上下動は極めて滑らかであり、この上		
	下動の抵抗に対し、制御棒及び中空ピストンの自重は十分大きい。		
	c. 万一,制御棒及びこれと結合した中空ピストンが駆動機構のボール		
	ナットから分離した場合、分離検出機構によりこれを検出し、かつ制		
	御棒の引き抜きを阻止する設計とする。また、制御棒落下が生じても、		
	ラッチ機構により,落下距離は210mm以内に抑えられる設計とする。		
	d. 全引抜位置から更に制御棒の引抜操作を行い,中空ピストンが引き		
	抜けないことを確かめることにより、制御棒と中空ピストンが分離し		
	ていないことを確認する。		
	e. 制御棒引抜シーケンスは運転手順で定め, 制御棒をこの運転手順に		
	従って引き抜く。		
	(2) 事故拡大防止対策		
	上記の事故防止対策にもかかわらず、万一、制御棒落下が発生した場		
	合には、以下の対策により事故の拡大防止を図る。		
	a. 中空ピストンのダッシュポット効果によって, たとえ制御棒及びこ		
	れと結合した中空ピストンが駆動機構から分離したとしてもその落下		
	速度が0.7m/sを超えることがない設計とする。		
	b. 制御棒価値ミニマイザを設け,制御棒引抜シーケンスを監視し,異		
	常な引き抜きを阻止する。		
	制御棒価値ミニマイザに記憶される制御棒引抜シーケンス監視プロ		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	グラムの設計基準は、臨界近接時に制御棒1本が万一落下した場合で		
	も、その落下制御棒の最大価値を約0.010∆k以下とする。		
	c. 主蒸気管放射能高の信号で主蒸気隔離弁を自動閉止し,発電所外へ		
	の核分裂生成物の放出を最小限にする。		
	d. 中性子束高, 主蒸気管放射能高等の信号により原子炉をスクラムさ		
	せる。		
	なお、実際には、起動停止用蒸気式空気抽出器を作動させることによ		
	り復水器の真空を保持することができるので、「3.4.5.3 核分裂生成物		
	の放出量及び線量の評価」で述べるような復水器からタービン建物への		
	放射性物質の漏えいが起こることはなく、核分裂生成物は、気体廃棄物		
	処理系(以下「オフガス系」という。)に導かれるので大気中への放出		
	量は無視できるほど小さくなる。		
	3.3.1.3 事故経過の解析 (12) (13)		
	制御棒と中空ピストンは、通常の使用状態では分離することはなく、自		
	重によりボールナットに着座している。万一,制御棒が固着した場合,中		
	空ピストンとボールナットが分離する。したがって、制御棒落下事象では		
	制御棒及びこれと結合した中空ピストンで一体となった落下を想定する。		
	3.3.1.3.1 9×9燃料(A型)を装荷した炉心について		
	(1) 解析条件		
	<u>a.</u> 初期条件	<u>(a)</u> 初期条件	
	解析は第1サイクル及び平衡サイクルに <u>ついて</u> ,次の4種類の原子	解析は <u>,9×9燃料 (A型)を装荷した炉心については</u> 第1	
	炉初期状態に対して行う。	サイクル及び平衡サイクル <u>,9×9燃料(B型)を装荷した炉心</u>	
		<u>については平衡サイクル</u> における次の4種類の原子炉初期状態に	
	<u>(a)</u> サイクル初期 低温時(20℃ 0%ボイド)臨界状態	対して行う。	
	<u>(b)</u> サイクル初期 高温待機時(287℃ 0%ボイド)臨界状態	サイクル初期 低温時(20℃ 0%ボイド)臨界状態	
	<u>(c)</u> サイクル末期 低温時(20℃ 0%ボイド)臨界状態	サイクル初期 高温待機時(287℃ 0%ボイド)臨界状態	
	<u>(d)</u> サイクル末期 高温待機時(287℃ 0%ボイド)臨界状態	サイクル末期 低温時(20℃ 0%ボイド)臨界状態	
		サイクル末期 高温待機時(287℃ 0%ボイド)臨界状態	
添付書類十	3.3.1.3.2 9×9燃料(B型)を装荷した炉心について		
冉揭:			
P10-3-38	a. 初期条件		
	解析は平衡サイクルについて、次の4種類の原子炉初期状態に対し		
	(a) サイクル初期 低温時 $(20℃ 0\% ホイド) 臨界状態$		
	(b) \mathcal{T}		
	(c) \mathcal{T} \mathcal		
	(a) サイクル木朔 尚温符機時 (287 C 0% ホイド) 臨界状態		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	サイクル初期及び末期とも、低温状態では、出力は定格の10 ⁻⁸ 、 燃料ペレット温度20℃で燃料エンタルピの初期値は8kJ/kgUO2 であり、高温待機状態では、出力は定格の10 ⁻⁶ 、燃料ペレット温度 287℃で燃料エンタルピの初期値は75kJ/kgUO2である。また、原子 炉圧力上昇解析における原子炉圧力の初期値は7.17MPa[gage]であ る。 なお、これら初期状態は、制御棒価値、落下速度、スクラム速度等 の解析条件のもと、取替炉心も含め保守的な解析結果を与えるよう設 定されたものである。 <u>5. 炉心流量</u> 原子炉起動時には、通常、制御棒引き抜き開始に先立ち、冷却材を 循環させ、定格の約 30%~約 40%の炉心流量を得るが、保守的に定 格の20%の炉心流量があるものとする。 <u>6.</u> 落下制御棒価値及び落下速度 落下制御棒価値は、制御棒価値ミニマイザの設計基準である0.010 Δ k に余裕をとり0.013 Δ kとし、落下速度は、中空ピストンのダッシ ュポット効果によって制限される0.7m/sとする。落下制御棒の反応度 曲線を第3.3.1-1図(1)、(2)に示す。これらの反応度曲線は、制御棒 価値やスクラム速度とあいまって取替炉心も含め、保守的な解析結果 を与えるよう設定されたものである。	 サイクル初期及び末期とも、低温状態では、出力は定格の10⁻⁸、 燃料ペレット温度20℃で燃料エンタルピの初期値は8kJ/kg・U02であり、高温待機状態では、出力は定格の10⁻⁶、燃料ペレット温度287℃で燃料エンタルピの初期値は75kJ/kg・U02である。 また、原子炉圧力上昇解析における原子炉圧力の初期値は 7.17MPa[gage]である。 なお、これら初期状態は、制御棒価値、落下速度、スクラム速度等の解析条件のもと、取替炉心も含め保守的な解析結果を与えるよう設定されたものである。 (b) 炉心入口流量 原子炉起動時には、通常、制御棒引き抜き開始に先立ち、冷却材を循環させ、定格の約30%~約40%の炉心流量を得るが、保守的に定格の20%の炉心流量があるものとする。 (c) 落下制御棒価値及び落下速度 落下制御棒価値は、制御棒価値ミニマイザの設計基準である 0.010Δk に余裕をとり0.013Δkとし、落下速度は、中空ピストンのダッシュポット効果によって制限される0.7m/sとする。落下制御棒の反応度曲線(※)は、制御棒価値やスクラム速度とあいまって取替炉心も含め、保守的な解析結果を与えるよう設定されたものである。 	体裁の適正化 (1文字分右にシフ ト) 記載の適正化 代表的数値を用いる解 析条件へ注記を追加
添付書類十 再掲: P10-3-38,39	 3.3.1.3.2 9×9燃料(B型)を装荷した炉心について (1) 解析条件 c. 落下制御棒価値及び落下速度 落下制御棒価値は、制御棒価値ミニマイザの設計基準である0.010Δk に余裕をとり0.013Δkとし、落下速度は、中空ピストンのダッシュポット効果によって制限される0.7m/sとする。落下制御棒の反応度曲線を第3.3.1-1図(3)に示す。これらの反応度曲線は、制御棒価値やスクラム速度とあいまって、保守的な解析結果を与えるよう設定されたものである。 		
	 <u>d.</u>スクラム条件 原子炉のスクラムは、最大反応度価値を有する制御棒(同一水圧制 御ユニットに属する1組又は1本)が全引抜位置に固着して挿入され ないものとする。 中性子束高スクラムは、定格出力の120%で作動するものとし、その作動遅れは0.09秒とする。 <u>スクラム反応度曲線を第3.3.1-2図(1)</u>, (2)に示す。これらの反応度曲線は、制御棒価値やスクラム速度とあいまって取替炉心も含め、保守的な解析結果を与えるように設定され 	 (d) スクラム条件 原子炉のスクラムは、最大反応度価値を有する制御棒(同一水圧制御ユニットに属する1組又は1本)が全引抜位置に固着して挿入されないものとする。 中性子束高スクラムは、定格出力の120%で作動するものとし、その作動遅れは0.09秒とする。 スクラム曲線(※)は、制御棒価値やスクラム速度とあいまって取替炉心も含め、保守的な解析結果を与えるように設定されたものである。 	代表的数値を用いる解 析条件へ注記を追加

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	たものである。		
添付書類十 再掲: P10-3-39	 3.3.1.3.2 9×9燃料(B型)を装荷した炉心について (1) 解析条件 d.スクラム条件 原子炉のスクラムは,最大反応度価値を有する制御棒(同一水 圧制御ユニットに属する1組又は1本)が全引抜位置に固着して 挿入されないものとする。 中性子束高スクラムは,定格出力の120%で作動するものとし, その作動遅れは0.09秒とする。スクラム反応度曲線を第3.3.1-2 図(3)に示す。これらの反応度曲線は、制御棒価値やスクラム速 度とあいまって,保守的な解析結果を与えるように設定されたものである。 		
	 e. 安全保護系(原子炉周期短スクラム(起動領域モニタ))は、保守的に作動しないものとする。さらに、原子炉停止機能の観点から安全保護系(中性子束高スクラム(平均出力領域モニタ))に単一故障を仮定する。 f. 逃がし安全弁については、安全弁機能より逃がし弁機能が先に作動するが、安全弁機能のみが作動すると仮定する。安全弁の吹出し圧力は、設定誤差等を考慮して、<u>添付書類八の第4.1-2表に示した圧力</u>より0.15MPa高い値を使用する。 g. ドップラ係数 事故に伴う原子炉出力の急上昇は、ドップラ効果のみで抑えられるとし、減速材の温度及びボイドの効果は考慮しない。減速材の温度及びボイドの効果は考慮しない。減速材の温度及びボイドの効果に考慮しない。減速材の温度及びボイドの効果に考慮したい。(2)に示したものと同じである。 	 (e) 安全保護系(原子炉周期短スクラム(起動領域モニタ))は、保守的に作動しないものとする。さらに、原子炉停止機能の観点から安全保護系(中性子束高スクラム(平均出力領域モニタ))に単一故障を仮定する。 (f) 逃がし安全弁については、安全弁機能より逃がし弁機能が先に作動するが、安全弁機能のみが作動すると仮定する。安全弁の吹出し圧力は、設定誤差等を考慮して、実際の安全弁機能設定点より0.15MPa高い値を使用する。 (g) ドップラ係数(※) 事故に伴う原子炉出力の急上昇は、ドップラ効果のみで抑えられるとし、減速材の温度及びボイドの効果を考慮すると、事故の解析結果は緩やかになる。解析に使用したドップラ係数は、<u>9×9燃料(A型)を装荷した炉心について、9×9燃料(A型)のみを装荷した第1</u> サイクルの値及び9×9燃料(A型)のみを装荷した第1 サイクルの値及び9×9燃料(A型)のみを装荷した第1 サイクルの値及び9×9燃料(A型)のみを装荷した炉心について、9×9燃料(B型)のみを装荷した炉心について、9×9燃料 	代表的数値を用いる解 析条件へ注記を追加
添付書類十 再掲: P10-3-39	 3.3.1.3.2 9×9燃料(B型)を装荷した炉心について (1) 解析条件		

頁	平成 21 年 12 月設置許可申請		設置法附則第23条第4項に基づく提出書(備考	
<u>h.</u> ペレットー燃料	¥被覆管ギャップ熱伝達係数		<u>(h)</u> ペレットー燃料被覆管ギャップ熱伝達係数		
ギャップ熱伝	達係数は, Ross & Stouteの関係式により)計算する。	ギャップ熱伝達係数は, Ross & Stouteの	関係式により計算す	
			る。		
なお、燃料被	覆管がその降伏応力に達したときは、その	の時点で,固	なお、燃料被覆管がその降伏応力に達し	たときは、その時点	
体接触熱伝達係	数は一定として取り扱う。		で、固体接触熱伝達係数は一定として取り扱	と う。	
<u>i.</u> 燃料被覆管-2	命却材熱伝達係数		<u>(i)</u> 燃料被覆管 – 冷却材熱伝達係数		
燃料被覆管と経	お材間の熱伝達係数は,以下に示す関係式	てを使用する。	燃料被覆管と冷却材間の熱伝達係数は、↓ 用する。	以下に示す関係式を使	
(a) 単相強制対法	む Dittus-Boelterの式		単相強制対流 Dittus-Boelterの式		
<u>(b)</u> 核沸騰状態	Jens-Lottesの式		核沸騰状態 Jens-Lottesの式		
<u>(c)</u> 膜沸騰状態			膜沸騰状態		
高温待機	時 Dougall-Rohsenowの式		高温待機時 Dougall-Rohsenowの	式	
低温	時 NSRRの実測データに基づいて 熱伝達相関式 <u>(14)</u>	て導出された	低 温 時 N S R R の 実 測 デ - された 熱伝達 相関式	-タに基づいて導出	
なお、解析で	は、一度膜沸騰に達すると最後まで膜沸騰	駦が持続する	なお、解析では、一度膜沸騰に達すると	最後まで膜沸騰が持	
と仮定する。			続すると仮定する。		
j. 限界熱条件の	间定		(j) 限界熱条件の判定		
燃料被覆管か	ら冷却材への熱伝達が核沸騰から膜沸騰に	こ移行する時	燃料被覆管から冷却材への熱伝達が核沸	騰から膜沸騰に移行	
点の判定は、以	下による。		する時点の判定は、以下による。		
(a) 高温待機時	沸騰遷移相関式でMCPRが1.07		高温待機時 沸騰遷移相関式でMC	PRが1.07	
<u>(b)</u> 低温時	Rohsenow-Griffithの式及びKutatela	adzeの式 (15)	低温時 Rohsenow-Griffithの 』 の式	式及びKutateladz	
k. 局所出力ピー:	テング係数		(k) 局所出力ピーキング係数 (※)		代表的数値を用いる解
<u> </u>	5.局所出力ピーキング係数は、それぞれの	の状態に応じ	解析に使用する局所出力ピーキング係数	は、それぞれの状態	析条件へ注記を追加
て次に示す値と	よう、		に応じて次に示す値とする。		
			9×9燃料(A型)を装荷した炉心につい	いて	
(a) 第1サイク/	\vee		第1サイクル		
			低温時(サイクル初期) 1.49		
	サイクル初期 サイクル末期		低温時(サイクル末期) 1.21		
低温晖	F 1.49 1.21		高温待機時(サイクル初期) 1.41 直測待機時(サイクル末期) 1.25		
高温待機明	f 1.41 1.25		同位时候时(サイクル水別) 1.23		
(b) 平衡サイク)			平衡サイクル		
			低温時(サイクル初期) 1.49		
	サイクル初期 サイクル末期		低温時(サイクル末期) 1.30		
低温晖	Ē 1.49 1.30		高温待機時(サイクル初期) 1.44 高温待機時(サイクル末期) 1.24		
高温待機明	Ē 1.44 1.24				

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
 添付書類十 _{再現}	<u>3.3.1.3.2</u> 9×9燃料(B型)を装荷した炉心について	9×9燃料(B型)を装荷した炉心について	
P10-3-40	(1) 解析条件 k. 局所出力ピーキング係数 (a) 平衡サイクル サイクル初期 サイクル末期 低 温 時	平衡サイクル 低温時(サイクル初期) 1.35 低温時(サイクル末期) 1.21 高温待機時(サイクル初期) 1.28 高温待機時(サイクル末期) 1.18	
	 1. 燃料被覆管は次の条件で破損するものとする⁽¹⁶⁾。 (a) 燃料棒挙動解析に当たっては,燃料エンタルピの最大値が,「反応度投入事象評価指針」に示された燃料エンタルピを超える燃料被覆管は破損したものとし,ここでは、ペレット燃焼度40,000MWd/t未満の破損しきい値として燃料エンタルピ385kJ/kgUO2 (92cal/gUO2),ペレット燃焼度40,000MWd/t以上の破損しきい値として,燃焼に伴い燃料棒内圧が上昇することも加味し「反応度投入事象評価指針」が示す燃料の許容設計限界である燃料エンタルピの最低値272kJ/kgUO2(65cal/gUO2)を用いる。 (b) ピーク出力部燃料エンタルビの増分が,以下に示す「発電用軽水型原子炉施設の反応度投入事象における燃焼の進んだ燃料の取扱いについて」(以下「反応度投入事象取扱報告書」という。)に示された,ペレットー燃料被覆管機械的相互作用を原因とする破損(以下「PCMI破損したいう。)のめやすを超える燃料被覆管は,破損したものとする。 (」ペレット燃焼度25,000MWd/t 未満460kJ/kgUO2(110cal/gUO2) (」ペレット燃焼度40,000MWd/t以上40,000MWd/t未満355kJ/kgUO2(85cal/gUO2) (」ペレット燃焼度65,000MWd/t以上75,000MWd/t程度まで167kJ/kgUO2(40cal/gUO2) 	 (1) 燃料棒挙動解析に当たっては、燃料エンタルピの最大値が、「反応度投入事象評価指針」に示された燃料エンタルピを超える燃料被覆管は破損したものとし、ここでは、ペレット燃焼度40,000MWd/t未満の破損しきい値として燃料エンタルピ385kJ/kg·U02、ペレット燃焼度40,000MWd/t以上の破損しきい値として、燃焼に伴い燃料棒内圧が上昇することも加味し「反応度投入事象評価指針」が示す燃料の許容設計限界である燃料エンタルピの最低値272kJ/kg·U02を用いる。 (m) ビーク出力部燃料エンタルピの増分が、以下に示す「発電用軽水型原子炉施設の反応度投入事象における燃焼の進んだ燃料の取扱いについて」(以下「反応度投入事象取扱報告書」という。)に示された、ペレットー燃料被覆管機械的相互作用を原因とする破損(以下「PCMI破損」という。)を生じるしきい値のめやすを超える燃料被覆管は、破損したものとする。 ベレット燃焼度25,000MWd/t以上40,000MWd/t未満355kJ/kg·U02 ペレット燃焼度40,000MWd/t以上55,000MWd/t程度まで167kJ/kg·U02 	記載の適正化

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(2) 解析方法		
	制御棒落下の解析は、大きく分けて次の2段階の解析となる。すなわ		
	ち、第1段階は、炉心の反応度変化と出力及び出力分布の変化を計算す		
	る炉心動特性解析であり、第2段階では、出力変化を入力として原子炉		
	圧力上昇解析及び最大出力燃料集合体の挙動解析を行う。		
	炉心動特性は反応度投入事象解析コードAPEX,燃料挙動解析は単		
	チャンネル熱水力解析コードSCATによって行う。		
	a. 炉心動特性解析 ^{(17) (18) (19)}		
	炉心動特性解析方法は、次のような前提をおく。		
	(a) 核的動特性解析において,出力の時間的変化は炉心一点近似とす		
	る。		
	(b) 核的動特性解析において,熱的現象は断熱とする。		
	(c) 出力の空間分布は, 炉心を二次元(R-Z)体系でノード区分し,		
	拡散方程式で解く。		
	(d) 炉心各部分のエンタルピの上昇は,出力分布に比例する。		
	(e) 炉心平均エンタルピがある程度上昇する間 (エンタルピステップ)		
	は、出力分布は一定とする。		
	(f) 炉心内のエンタルピの最大値は, エンタルピ分布のピーク値に局		
	所出力ピーキング係数をかけて求める。		
	b. 原子炉圧力上昇解析		
	原子炉圧力上昇解析は、炉心動特性解析で求めた炉心出力時間変化		
	から蒸気発生量の計算を行い、原子炉圧力の上昇割合を求める。原子		
	炉圧力上昇は、次のような解析モデルで計算を行う。		
	(a) 燃料から冷却材への熱伝達モードは,核沸騰モードが継続するも		
	のと仮定し、蒸気発生量を保守的に評価する。		
	(b) 冷却材に伝達された熱量は,蒸発潜熱と飽和圧力の上昇による飽		
	和水及び飽和蒸気の温度上昇に消費する熱量に等しいとする。		
	(c) 炉心は高温待機状態にあり, 主蒸気隔離弁は閉じているものと仮		
	定し、圧力上昇を保守的に評価する。		
	c. 燃料挙動解析		
	燃料季動解析では、炉心動特性解析で求めた燃料集合体出力の時間		
	変化を人力として、最大出力燃料棒の除熱計算を行い、燃料エンタル		
	使用する計昇ユートは、「連転時の美常な適変変化」の解析、LOC		
	A 胖 你 寺 ぐ 州 い ら れ し い る 計 昇 ユ ー ト (SUAI) ぐ め り 、 こ れ は 府 加け の 法 動 た 老 唐 し た 光 チ ュ ン さ ュ 劫 よ 古 知 ビ エ ご ュ に 甘 ざ く き の で		
	コ州の 加則を 与 思 し に 単 ナ ヤ ン イ ル 熱 水 ノ		
	のる。		
	なわ、前仰悴洛下の胜別では、次の頃に関して変更を行つている。		

頁	平成 2	21年12月設置許可申請			設置法附則第23条第4項に基づく提出書(補正後)	備考
	(a) ペレット内温度計	算メッシュ点数は20点。	とし、ペレ	ット径を内側		
	から5:3:2に3分割	し、内側領域に4点、中	中間領域に	5点,外側領		
	域に11点をとり、外	側領域に重点をおいて解	解析する。			
	(b) 熱伝達係数					
	前項で述べたギャ	ップ熱伝達係数関係式と	及び低温時の	の膜沸騰熱伝		
	達係数関係式を追加	する。				
	(c) ジルコニウムー水	反応				
	燃料被覆管の高温	化に伴う被覆材と冷却	オとの反応に	による発熱が		
	燃料被覆管の最外周	領域に起こるものとする	5.			
	(3) 解析結果					
	a. 以上の前提を基にし	た制御棒落下の解析結果	果のうち,炸	燃料エンタル		
	ピが最大になる第1サ	イクル初期、低温時の炊	然料エンタ	ルピの時間変		
	化を第3.3.1-3図(1)	こ示す。				
	急激な出力上昇は、	ドップラ反応度の負のこ	フィードバ	ックにより抑		
	えられるとともに,制行	卸棒落下開始から約3.1和	沙後に平均に	出力領域モニ		
	タの中性子東高信号が	発生して、原子炉はスク	クラムする。	。燃料エンタ		
	ルピは、約5.1秒後に約	約746kJ/kgUO2で最大る	となり,そ(の後除熱によ		
	り低下する。					
	サイクルを通して結	果が厳しくなる第1サイ	イクルにおり	ける制御棒洛		
	トの解析結果を以下の	表によどめる。なお、当	- 餌サイクハ			
	進んでいるにめ,トツ	ノフ係級の絶対値は入る	きくなり, タ	弊竹結朱は綾		
	ていになる傾向となる	0				
		サイクル初期	サイク	クル末期		
		高 温		高 温		
			仏 温 時 	待機時		
	燃料エンタルピの最大値					
	(kJ/kgUO ₂)	約 746 約 614	約 671	約 506		
	エンタルピ (kI/kgUO ₂)	約 477 約 420	約 423	約 392		
	ト、燃料エンタルピの星	+値は いずれの担合	1. 「反皮庫」	いれまの証価		
	お針」に示される963k	I/kgIIO (230cal/gII)	し、反応反	皮八事家市 画 毎に伴うペレ		
	ット融占低下分に相当	y/kg002(200cal/g0) 当すろエンタルピ約105	5_2 /kgUO	しんでガドリ		
	ニア添加に伴うペレッ	-) 。 く) / こ 2 1100	スエンタル	2次0パーク		
	110.を差し引いた837	「ILLANIA」) IkI/kgIIの。を下回ってい	いろまた	原子炉冷却	✓ 比較表 P.122参照	
	材圧力バウンダリに	かかろ圧力は保守的	り、 のに見積も	いっても約		
	8.54MPa[gage]であろ	www.ww/zz/Jis, // 'JF		,~、(),小)		

頁	頁 平成 21 年 12 月設置許可申請					設置法附則第23条第4項に基づく提出書	(補正
頁	 c.浸水燃料の影響によっても、本原子炉と同一の炉心規模のプラントの原子炉停止能力及び圧力容器の健全性が確保されることを、「反応度投入事象評価指針」添付2と同一の方法を用いて評価している⁽¹²⁾。本原子炉は、ピーク出力部燃料エンタルピ、原子炉停止余裕及び落下制御棒価値がこの評価における前提条件に包絡されているため、浸水燃料の影響によって、原子炉停止能力及び圧力容器の健全性が損なわれることはない。 さらに、PCMI破損に伴う機械的エネルギの影響については、炉心規模、ピーク出力部燃料エンタルピ、原子炉停止余裕及び落下制御棒価値が「反応度投入事象取扱報告書」添付4に示されるPCMI破損時の機械的エネルギの影響評価に包含される。 d.原子炉は、スクラム後、主蒸気管放射能高で主蒸気隔離弁が自動閉止するので、原子炉スクラム(主蒸気隔離弁閉)時の原子炉停止手順に従い、減圧・降温を行い、冷態停止状態に移行することができる。 e.(1)及び(2)の前提を基にした解析結果のうち、破損燃料棒の割合は、燃焼の進んだ燃料棒本数が増加する平衡サイクルの方が多くなる傾向となる。以下に平衡サイクルにおける解析結果を示す。 					設置法附則第 23 条第 4 項に基づく提出書	(補正
		サイク 低 温 時	ル初期 高 温 待 機 時	サイク 低 温 時	ル末期 高 温 待 機 時		
	破損燃料棒割合(%)	約 0.5	約1.3	約 0.7	約 1.2		
	炉心の全燃料棒に 平衡サイクル初期, 3.3.1-4図(1)に示す なお,上記破損燃料 る破損しきい値によ しきい値のめやすに。 ている。	すする破損燃 高温待機時の 。 斗棒割合は、 る評価結果で よる評価結果で	料棒割合は)燃料エンタ 「(1) 解析 あり,(b) は,上記破	最大で約1. マルピヒスト 条件1. 」の こ示される H 損燃料棒割台	3%である。 ・グラムを第 (a)に示され ?CMI破損 合に包含され		
	 3.3.1.3.2 9×9燃料(B) (1) 解析条件 a.初期条件 解析は平衡サイク) て行う。 	型)を装荷し レについて, う	た炉心につ 次の4種類(いて の原子炉初期	別状態に対し	▶ 比較表 P. 78参照	

E後)	備考

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
頁	 平成 21 年 12 月設置許可申請 g.ドップラ係数 事故に伴う原子炉出力の急上昇は、ドップラ効果のみで抑えられるとし、減速材の温度及びボイドの効果は考慮しない。減速材の温度及びボイドの効果と考慮すると、事故の解析結果は緩やかになる。解析に使用したドップラ係数は、添付書類八の第3.4.1-3図(3)に示したものと同じである。 h.ベレットー燃料被覆管ギャップ熱伝達係数 ギャップ熱伝達係数は、Ross & Stouteの関係式により計算する。なお、燃料被覆管がその降伏応力に達したときは、その時点で、固体接触熱伝達係数は一定として取り扱う。 i.燃料被覆管がその降伏応力に達したときは、その時点で、固体接触熱伝達係数 燃料被覆管シー冷却材熱伝達係数 燃料被覆管シー冷却材熱伝達係数 (a) 単相強制対流 Dittus-Boelterの式 (b)核沸騰状態 Jens-Lottesの式 (c) 膜沸騰状態 高温待機時 Dougal1-Rohsenowの式 低 温 時 NSRRの実測データに基づいて導出された熱伝達相関式⁽¹⁴⁾ なお、解析では、一度膜沸騰に達すると最後まで膜沸騰が持続すると仮定する。 j.限界熱条件の判定 熱騰運移相関式でMCPRが1.07 (b) 低温時 Rohsenow-Griffithの式及びKutateladzeの式⁽¹⁵⁾ k.局所出力ピーキング係数 解析に使用する局所出力ピーキング係数は、それぞれの状態に応じて次に示す値とする。 (a) 平衡サイクル 	設置法附則第 23 条第 4 項に基づく提出書(補正後) 比較表 P. 80参照 比較表 P. 82参照	備考
	近ボイクル初期ザイクル未期低温時1.351.21高温待機時1.281.18		
	 1. 燃料被覆管は次の条件で破損するものとする⁽²⁰⁾。 (a) 燃料棒挙動解析に当たっては,燃料エンタルピの最大値が,「反応度投入事象評価指針」に示された燃料エンタルピを超える燃料被 		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	覆管は破損したものとし,ここでは,ペレット燃焼度40,000MWd/t		
	未満の破損しきい値として燃料エンタルピ385kJ/kgUO ₂		
	(92cal/gUO ₂), ペレット燃焼度40,000MWd/t以上の破損しきい値		
	として、燃焼に伴い燃料棒内圧が上昇することも加味し「反応度投		
	入事象評価指針」が示す燃料の許容設計限界である燃料エンタルピ		
	の最低値272kJ/kgUO ₂ (65cal/gUO ₂)を用いる。		
	(b) ピーク出力部燃料エンタルピの増分が,以下に示す「反応度投入		
	事象取扱報告書」に示された、PCMI破損しきい値のめやすを超		
	える燃料被覆管は、破損したものとする。		
	i ペレット燃焼度 25,000MWd/t 未満		
	$460 \mathrm{kJ/kgUO}_2(110 \mathrm{cal/gUO}_2)$		
	ii ペレット燃焼度 25,000MWd/t 以上 40,000MWd/t 未満		
	$355 \mathrm{kJ/kgUO}_2(85 \mathrm{cal/gUO}_2)$		
	iii ペレット燃焼度 40,000MWd/t 以上 65,000MWd/t 未満		
	$209 \mathrm{kJ/kgUO^2}(50 \mathrm{cal/gUO_2})$		
	iv ペレット燃焼度 65,000MWd/t 以上 75,000MWd/t 程度まで		
	$167 \mathrm{kJ/kgUO}_2(40 \mathrm{cal/gUO}_2)$		
	(2) 解析方法		
	制御棒落下の解析は、大きく分けて次の2段階の解析となる。すなわ		
	ち、第1段階は、炉心の反応度変化と出力及び出力分布の変化を計算す		
	る炉心動特性解析であり、第2段階では、出力変化を入力として原子炉		
	圧力上昇解析及び燃料集合体の挙動解析を行う。		
	炉心動特性及び燃料挙動解析はEUREKA-Nによって行う。		
	a. 炉心動特性解析 ⁽¹³⁾		
	炉心動特性解析方法は、次のような前提をおく。		
	(a) 核的動特性解析において,出力の時間的変化は炉心一点近似とす		
	る。		
	(b) 核的動特性解析において,熱的現象は断熱とする。		
	(c) 出力の空間分布は,三次元拡散方程式で解く。		
	(d) 炉心各部分のエンタルピの上昇は,出力分布に比例する。		
	(e) 炉心最大エンタルピがある程度上昇する間 (エンタルピステップ)		
	は、出力分布は一定とする。		
	(f) 炉心内のエンタルピの最大値は, エンタルピ分布のピーク値に局		
	所出力ピーキング係数をかけて求める。		
	b. 原子炉圧力上昇解析		
	原子炉圧力上昇解析は、炉心動特性解析で求めた炉心出力時間変化		
	から蒸気発生量の計算を行い、原子炉圧力の上昇割合を求める。原子		
	炉圧力上昇は、次のような解析モデルで計算を行う。		
	(a) 燃料から冷却材への熱伝達モードは,核沸騰モードが継続するも		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	のと仮定し、蒸気発生量を保守的に評価する。		
	(b) 冷却材に伝達された熱量は,蒸発潜熱と飽和圧力の上昇による飽		
	和水及び飽和蒸気の温度上昇に消費する熱量に等しいとする。		
	(c) 炉心は高温待機状態にあり, 主蒸気隔離弁は閉じているものと仮		
	定し、圧力上昇を保守的に評価する。		
	c. 燃料挙動解析		
	燃料挙動解析では、炉心を同程度の出力挙動の複数の燃料集合体よ		
	り構成される複数の代表チャンネルに分け、各代表チャンネルごとに		
	除熱計算を行い、燃料エンタルピの時間変化を求める。		

頁	平成 21 年 12 月設置許可申請					設置法附則第23条第4項に基づく提出書(補正後)	備考
	(3) 解析結果						
	a. 以上の前提を基にし	た制御棒落	下の解析結果	果のうち, 烤	然料エンタル		
	ピが最大になる平衡サイクル末期、高温待機時の燃料エンタルピの時						
	間変化を第3.3.1-3図	(2)に示す。					
	急激な出力上昇は,	ドップラ反	応度の負のこ	フィードバッ	ックにより抑		
	えられるとともに, 制	卸棒落下開如	始から約1.3種	少後に平均と	出力領域モニ		
	タの中性子束高信号が	発生して,	原子炉はスク	^フ ラムする。	燃料エンタ		
	ルピは,約3.0秒後に差	約629kJ/kgU	JO ₂ で最大と	こなり, その	の後除熱によ		
	り低下する。						
	その他の原子炉初期	状態を含め	た制御棒落	下の解析結り	果を以下の表		
	にまとめる。						
		サイク	ル初期	サイク	1ル末期		
			高 温		高 温		
		低温時	待機時	低温時	待機時		
	燃料エンタルピの最大値 (k,J/kgUO2)	約 478	約 597	約 470	約 629		
	エンタルピ (kJ/kgUO2)	約 284	約 385	約 305	約 402		
	 b.燃料エンタルピの最指針」に示される963k ト融点低下分に相当す 添加に伴うペレット融 を差し引いた837kJ/kg バウンダリにかかる, [gage]である。 c.浸水燃料の影響によ・ 原子炉停止能力及び圧え 事象評価指針」添付2と は、ピーク出力部燃料コ がこの評価における前れ よって、原子炉停止能力 越特 規模、ピーク出力部燃料 植が「反応度投入事象 報告書添付4の影響評(大/kgUO2UE っち同二是及して放平面には、い2-2点UE つち同二是及して放伍です。 はい22のででは、このでは、2000年の日本では、2000年の日本では、このでは、こののかけでは、していないので、 していないでは、このでは、1000年の日本では、1000年年の日本では、1000年年の日本では、1000年年の日本では、1000年年	ずれの場合 30cal/gUO 2ピ約105kJ/ ゴロつ的 炉確105kJ/ 三守 子性用子れる。 着 一 や で りで の た の た の た の た の た の に の の の に の の の に の の の の に の の の の の に し し で の に の の の の に し し で の に の の に の に の に の に っ い に の に の に っ い に い に っ の に っ い に っ 、 で っ い に っ で っ い に っ い に っ っ の に っ っ の っ い に っ っ っ い っ っ っ い っ っ い っ っ っ い っ っ の の の の の の の の の の の の の	ら「反ら」 kg U ル な りかU の よ な よ ち の り し し れ た の し れ し て 、 に た っ 、 に し に ん た の し い し れ し に れ し に れ し い し れ に た っ 、 に し し い し に れ し に た っ 、 に し に い し に れ し に い に た い に し に れ た っ 、 に し に れ た っ 、 に し に れ し に い に し に れ た っ 、 に れ た っ 、 に れ た っ 、 れ し に い び し た れ に い び し た い で し に れ に い び に し た い で し に い び に し に い び に し て い び に し て い び に し て い で し に し て い び に し て い で し て い で し て い で い た い の い で し て い の で い で い で い で い で い で い で い で い で い で い で い で い で い で い で い で い で い の い の い の い の い の い の い の い の い い い の い こ い い の い の い の い の い の い の い の い の い の い の い の い の い っ の い う い ち の い ら の い の い の い の い う い ち い う い ち い う い う い ら の い う い う い の い う い ら い の い う い う い う い う い う い う い う い う い う い う い い う い う い う い う い い い い い い い う い う い い い い い い い い い い い い い	受入伴ガZ1戸約8.47MPa の「 ²⁾ 下然っい客V1KJ/約8.47MPa シーン度原棒影なに制破れる。 びて、前料とは制破れる。 がでしていたいでです。 がでしていたい。 がでした。 がでのの人炉値に、。 の同のののののののののののののののでは、 がいたいでののののののののののでは、 がいたいでののののののののののののでは、 ないたいでののののののののののののののののののののののののののののののののののの		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	
	d. 原子炉は, スクラム後, 主蒸気管放射能高で主蒸気隔離弁が自動閉		
	止するので、原子炉スクラム(主蒸気隔離弁閉)時の原子炉停止手順		
	に従い、減圧・降温を行い、冷態停止状態に移行することができる。		
	e. (1)及び(2)の前提を基にした解析結果のうち,破損燃料棒の割合の		
	解析結果を以下に示す。		
	サイクル初期 サイクル末期		
	低温時 高温 低温時 高温 待機時		
	破損燃料棒割合(%)約0.3約1.3約0.3約1.7		
	炉心の全燃料棒に対する破損燃料棒割合は最大で約1.7%である。		
	半衡サイクル末期,高温待機時の燃料エンタルピヒストグラムを第		
	なお、上記破損燃料棒割合は、「(1) 解析条件1. 」の(a)に示される		
	1000~すによる評価結果は,上記破損燃料棒割合に包含されている。		
	平 平		
	(1) 「1.1.2.3 刊例基準」の(2)の基準を個定りること。 (2) 「1.1.9.9 判断其進」の(2)の基準を満足すること		
	(2) 「 $1.1.2.3$ 刊例屋中」の (3) の屋中を個定りること。 (3) 「反应度扱入事免評価指針」に示されている以下の基準を満足するこ		
	。 a 浸水燃料の破裂に上ろ衝撃圧力等の発生に上っても、原子恒停止能		
	カ及び原子炉圧力容器の健全性を指わわたいこと		
	かお「燃料エンタルピの制限値の適用に当たっては」燃焼の進行等に伴		
	うペレット融点低下の影響を考慮する。		
	「3.3.1.3 事故経過の解析」で示したように、燃料エンタルピの最大値		
	は約 746k,J/kgUO。であり、制限値 963kJ/kgUO。(230cal/gUO。)から燃焼の		
	進行等に伴うペレット融点低下の影響を考慮した値 837kJ/kgUO2 を超えて	□ 比較表 P. 123 参照	
	いない。		
	また,原子炉冷却材圧力バウンダリにかかる圧力は最高使用圧力の 1.2		
	倍の圧力を十分に下回る。		
	さらに、浸水燃料の影響によって、原子炉停止能力及び圧力容器の健全		
	性が損なわれることはない。	▶ 比較書 D 192 参照	
	なお、PCMI破損に伴う機械的エネルギの影響については、「反応度		
	投入事象取扱報告書」添付4の影響評価に包含される。		
	したがって,上記(1),(2)及び(3)は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	3.4 環境への放射性物質の異常な放出	<u>(ⅲ)</u> 環境への放射性物質の異常な放出	
	<u>3.4.1</u> 放射性気体廃棄物処理施設の破損	<u>a.</u> 放射性気体廃棄物処理施設の破損	
	3.4.1.1 原 因		
	原子炉の通常運転時に,何らかの原因で <u>オフガス系</u> の一部が破損し,こ	原子炉の通常運転時に,何らかの原因で <u>気体廃棄物処理系(以</u>	記載の適正化
	こに貯留されていた放射性希ガス(以下「希ガス」という。)が環境に放	<u>下「オフガス系」という。)</u> の一部が破損し,ここに貯留されてい	
	出される <u>可能性があ</u> る。	た放射性希ガス(以下「希ガス」という。)が環境に放出される <u>事</u>	
		象を想定する。	
	3.4.1.2 事故防止対策及び事故拡大防止対策		
	(1) 事故防止対策		
	オフガス系の破損の発生を防止するため、次のような設計及び運転管		
	理上の対策を講じる。		
	a. 配管等の設計に当たっては, 原子炉寿命中の各種の荷重を十分に考		
	慮した厳しい条件を適用する。		
	b. 材料の選定,加工及び配管等の設計・製作は,諸規格及び基準に適		
	合させるようにし、また、十分な品質管理を行う。		
	c. 系統全体をほぼ大気圧となる設計とする。		
	d. 復水器から抽出した排ガス中の水素ガス,酸素ガスを可燃限界以下		
	にするため蒸気式空気抽出器及び起動停止用蒸気式空気抽出器(以下		
	これらを「空気抽出器」という。)の駆動蒸気で希釈し、更に気体廃		
	乗物処理糸排ガス再結合器で水素と酸素を再結合させる。 (2) 本以はしたに以体		
	(2) 事故拡大防止対策		
	上記の事政防止対策にもかかわらず、万一、オフカス系の破損が発生		
	した場合には、以下の対策により事政の拡大防止を図る。		
	a. 気体廃業物処理設備エリア排気セニタ等により破損を検出し, 空気 ・ ************************************		
	1 計画なが開催寺の対象を通しる。		
	D. 土安な機器の削後に逐隔于動の隔離できる井を設け、中天前御室か と 場次できて トラにオス		
	ら保住できるようにする。		
	3 4 1 3 核分裂生成物の放出量及び線量の評価 ⁽²¹⁾⁽²²⁾		
	3 4 1 3 1 核分裂生成物の放出量(0 麻星の計画)		
	(1) 解析条件		
	事故時の核分裂生成物の移行と放出量の評価は、次の仮定に基づいて		
	行う。		
	a. 希ガス放出量が大きくなる破損箇所としては,気体廃棄物処理系活	(a) 希ガス放出量が大きくなる破損箇所としては,気体廃棄物処	
	性炭式希ガスホールドアップ塔(以下「ホールドアップ塔」という。)	理系活性炭式希ガスホールドアップ塔(以下「ホールドアップ	
	第1塔の入口配管及び空気抽出器の出口配管が考えられるが、ここで	塔」という。) 第1塔の入口配管及び蒸気式空気抽出器及び起動	記載の適正化
	は希ガスの減衰時間が短く希ガスの環境への放出がより大きくなる空	<u>停止用蒸気式空気抽出器(以下「空気抽出器」という。)</u> の出口配	
	気抽出器出口配管での破損を考えるものとする。	管が考えられるが、ここでは希ガスの減衰時間が短く希ガスの	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	 b. 破損が生じた時点における空気抽出器からの希ガスの放出率は、運転上許容される最大値である1.11×10¹⁰Bq/s(30分減衰換算値)とする。 c. オフガス系に保持されていた希ガスの破損箇所からの放出量は、隔離時間を考慮して厳しくなるように評価し、ホールドアップ塔第1塔からは保持されていた希ガスの10%が放出されるものとする。 d. 空気抽出器及び破損箇所は、気体廃棄物処理設備エリア排気モニタによって事故を検知するのに要する時間及び放射能閉じ込め機能の観点から、オフガス系の隔離できる弁に単一故障を仮定した上で隔離操作に要する時間を十分に見込んだ時間後に隔離されるものとし、事故後12.5分以内には隔離されないものとする。したがって、事故後12.5分間は空気抽出器のもの者ガスの放出を考慮する。炉心内で発生した希ガスが空気抽出器の出口に到達するまでに減衰する効果は安全側に無視するものとする。 e. 環境への希ガスの放出は、評価結果が厳しくなる原子炉・タービン建物換気空調系作動を仮定して評価する。 f. 解析結果 上記の解析条件に基づいて計算した核分裂生成物の大気中への放出量は第3.4.1-1表のとおりである。 	 設置に用効第23米第4項に並び、提出量(福止復) 環境への放出がより大きくなる空気抽出器出口配管での破損を 考えるものとする。 (b) 破損が生じた時点における空気抽出器からの希ガスの放出率 は、運転上許容される最大値である1.11×10¹⁰Bq/s (30分減衰 換算値)とする。 (c) オフガス系に保持されていた希ガスの破損箇所からの放出量 は、隔離時間を考慮して厳しくなるように評価し、ホールドア ップ塔第1塔からは保持されていた希ガスの10%が放出される ものとする。 (d) 空気抽出器及び破損箇所は、気体廃棄物処理設備エリア排気 モニタによって事故を検知するのに要する時間及び放射能閉じ 込め機能の観点から、オフガス系の隔離できる弁に単一故障を 仮定した上で隔離操作に要する時間を十分に見込んだ時間後に 隔離されるものとし、事故後12.5分以内には隔離されないもの とする。したがって、事故後12.5分間は空気抽出器からの希ガ スの放出を考慮する。炉心内で発生した希ガスが空気抽出器の出 ロに到達するまでに減衰する効果は安全側に無視するものと する。 (e) 環境への希ガスの放出は、評価結果が厳しくなる原子炉・タ ービン建物換気空調系作動を仮定して評価する。 	
	 3.4.1.3.2 線量の評価 評価前提 大気中に放出される希ガスは,原子炉・タービン建物換気空調系の作動を考慮するので排気筒から放出されるものとする。放出された希ガスによる敷地境界外のγ線空気カーマは,<u>添付書類六の「2.5 安全解析</u>に使用する気象条件」に記述する相対線量に希ガスの全放出量を乗じて求める。 (2) 評価方法 敷地境界外における希ガスのγ線外部被ばくによる実効線量H_γ(Sv)は, (3.4-1)式で計算する。 H_γ = K · D/Q · Q_γ	(f) 大気中に放出される希ガスは、原子炉・タービン建物換気空 調系の作動を考慮するので排気筒から放出されるものとする。 放出された希ガスによる敷地境界外のγ線空気カーマは、 <u>現地</u> における2005年1月から2005年12月までの気象観測による実測 値及び実効放出継続時間より求めた相対線量に希ガスの全放出 量を乗じて求める。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(K=1Sv/Gy)		
	D/Q :相対線量 (Gy/Bq)		
	Q _γ : 事故期間中の希ガスの大気放出量 (Bq)		
	(γ線実効エネルギ 0.5MeV 換算値)		
	(3) 評価結果		
	上記の評価方法に基づき敷地境界外の実効線量を評価した結果は、第		
	3.4.1-2表のとおり約8.1×10 ⁻² mSvである。		
	上記の値から判断して、本事故による周辺の公衆に与える放射線被ば		
	くのリスクは十分に小さいものと考えられる。		
	3.4.1.4 判断基準への適合性の検討		
	本事故に対する判断基準は、「1.1.2.3 判断基準」の(5)である。		
	「3.4.1.3.2 線量の評価」で示したように、本事故により周辺の公衆に		
	対し、著しい放射線被ばくのリスクを与えることはなく、「1.1.2.3 判断		
	基準」の(5)は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>3.4.2</u> 主蒸気管破断	<u>b.</u> 主蒸気管破断	
	3.4.2.1 原 因		
	原子炉の出力運転中に、何らかの原因により格納容器外で主蒸気管が破	原子炉の出力運転中に、何らかの原因により原子炉格納容器(以	記載の適正化
	断 <u>した場合には</u> , 破断口から冷却材が流出し, 放射性物質が境境に放出さ	<u>ト 格納容器」という。)</u> 外で王烝気管が破断 <u>することで</u> , 破断口	
	<i>れいる<u>可能性が</u>あ</i> る。	から行却材が流出し、放射性物質が境境に放出される <u>事家を想定す</u> ス	
	3.4.2.9 事故防止対策及び事故扩大防止対策		
	(1) 事故防止対策		
	主蒸気管破断の発生を防止するため、次のような設計及び運転管理上		
	の対策を講じる。		
	a. 配管等の設計に当たっては,原子炉寿命中の各種の荷重を十分に考		
	慮した厳しい条件を適用する。		
	b. 材料の選定,加工及び配管等の設計・製作は,諸規格及び基準に適		
	合させるようにし、また、十分な品質管理を行う。		
	c. 主蒸気管トンネル内での雰囲気温度の検出等によって,破断に進展		
	する前に破損を検知し、適切な処置を講じる。		
	(2) 事政拡大防止対策		
	上記の争政防止対束にもかかわら9,万一, 土然気官破断が発生した 場合には、以下の対策により事故の拡大防止を図る		
	a 圧力容器の主蒸気出口ノズルに主蒸気流量制限器を設け 事故時の		
	冷却材流出量を制限する。		
	b. 主蒸気管の格納容器貫通部の両側に設ける主蒸気隔離弁を, 主蒸気		
	管流量大, 主蒸気管周囲温度高, 主蒸気管放射能高, 主蒸気管圧力低		
	等の信号で自動閉止させ冷却材の放出を抑える。		
	3.4.2.3 事故経過の解析		
	3.4.2.3.1 $9 \times 9 燃料 (A型) を装荷した炉心について$		
	(1) 脾切条件 解析は、次のような仮定を用いて行う		
	解例は, ひのような仮定を用いて11)。 a	(a) 原子恒け 事故発生直前まで定格出力の約102% (執出力	
	<u> - </u> - - - - - - - - - - - - -	<u>(4)</u> (1027) (
	運転していたものとする。また、原子炉圧力の初期値は7.17	時間(2,000日)運転していたものとする。また、原子炉圧力の	
	MPa[gage]とする。MCPRの初期値は実際には通常運転時の熱的制	初期値は7.17MPa[gage]とする。MCPRの初期値は実際には通	
	限値(1.22)よりも小さくなることはないが, <u>「3.2.1 原子炉冷却</u>	常運転時の熱的制限値(1.22)よりも小さくなることはないが,	
	<u>材喪失」</u> で用いているものと同じ値を用いることとし,1.19とする。	「(i) 原子炉冷却材の喪失又は炉心冷却状態の著しい変化,	
		<u>a. 原子炉冷却材喪失」</u> で用いているものと同じ値を用いるこ	
		ととし、1.19とする。	
1			

b \overline{P} with \overline{P} or \overline{P} with \overline{P}	頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
 4.00%のの必然であることでな。また、熟年期間で変化できなして、熟年満年、 をないくすた度を知った。 をないくすた度を知った。 4.本の主意気着やいたり、本など時間に必要化で能特に通常設計すると低 なし、安山と無かくしたが加速したので能力をないます。 5. 本本の主意気着やいたり、本など時間に少数化を考慮して、 たが、 4. 本の主意気着やいたし、本など時間に少数化を考慮して、 たが、 4. 本の主意気着かど、1本が、第二本ので用したのでは美化なたちのたちの、 5. 本式の使用され、主意気を消費したのといたの、 5. 本式の使用され、主意気を消費したのといたの、 5. 本式の使用され、主意気を消費したのといたの、 5. 本式の使用され、主意気を消費したのといたの、 5. 本式の使用され、生意気を消費したの、 5. 本式の使用され、生意気を消費したの、 5. 本式の使用ですべきないといた。 5. 本式の使用できないといたの、 5. 本式の使用できないといたの、 5. 本式の使用できないといたの、 5. 本式の使用できるたきの、たち、 5. 本式の使用できるたきの、たち、 5. 本式の使用できるたきの、たち、 5. 本式の使用でするたきのたちる、 5. 本式の使用でするたきため、 5. 本式の使用でするたきため、 5. 本式の使用でするたきためたまする、 5. 本式の使用でするたきため、 5. 本式の使用でするたきためまする、 5. 本式の使用でするたきな、 5. 本式の使用でするたきまし、 5. 本式の使用でするたきまの、 5. 本式の使用でするたきまののですすなたいためたまでる、 5. 本式の使用でするたきまののですすなたいためたまのでするためままのの、 5. 本式の使用でするたきまののですてたいため、 5. 本式の使用でするたきまののですてたいためたまのですてたいためままのので、 5. 本式の使用できるたきまののですすたいためままののですてたいため、 5. 本式の使用できるたちまののですでは、 5. 本式の使用できるたきまののですでは、 5. 本式の使用できるたきまののですては、 5. 本式の使用できるたきののですては、 5. 本式の使用できるたきののですでは、 5. 本式の使用できるたきまののですては、 5. 本式の使用できるまののですでは、 5. 本式の使用できるたきのの、 5. 本式の使用できるたきのの、 <li5. li="" 本式の使用できたのまののですては、<=""> 5. 本式の使用</li5.>	<u>b.</u> 解析に用い	いる最大線出力密度は、通常運転時の熱的制限値である	(b) 解析に用いる最大線出力密度は,通常運転時の熱的制限値で	
 キャップ教伝神教科学会、認識が書き、「教育法典 を報してきる面を加いな。 4. 本部では高度のうわしたが希望が書き、「時時で「音」にないたいたい。 4. 本部な「意味」であっては高齢」はまでの情報は、そのないたいたい。 4. 本部な「意味」であっては高齢」はまでの情報は、そのないたいたい。 4. 本部な「意味」であっては高齢」はまでの情報の「日本」の「「「「「」」」」」、 4. 本部な「意味」であっては高齢」はまでの「「」」、 4. 本部な「意味」であっては高齢」はまでの「「」」、 4. 本部な「意味」であっては高齢」にない。 4. 本部な「意味」であっては高齢」にない。 4. 本部な「意味」であっては高齢」にない。 4. 本部な「意味」であっては高齢」にない。 4. 本部な「意味」であっては高齢」であっては高齢」であっては高齢」にない。 4. 本部な「意味」にない。 4. 本部な「意味」」、 4. 本部な「意味」」 4. 本部な「意味」」 4. 本部な「意味」」 4. 本部な」」 4. 本部な」 4. 本部な」」 4. 本部な」 4. 本部な」	44.0kW/mの1	102%であるとする。また、燃料被覆管とペレット間の	ある44.0kW/mの102%であるとする。また,燃料被覆管とペレッ	
 たまれしてする確認知いる。 た. れなの主義気管のうちー本が特殊的意味で加速に回帰就計するとなしたい。 たい、お出治薬材量の評価に当たっては該項由までの汚染現実を考慮したい。 たい、お出治薬材量の評価に当たっては該項由までの汚染現実を考慮したい。 たい、お出治薬材量の評価に当たっては該項由までの汚染現実を考慮したい。 たい、お出治薬材量の評価に当たっては該項由までの汚染現実を考慮したい。 たい、お出治薬材量の評価に当たっては該項由までの汚染現実を考慮したい。 たい、お出治薬材量の評価に当たっては該項由までの汚染現実を考慮したい。 たい、素菜の簡単非常に、主義気管売量人の信号によりの.5秒の素作品とお たい、素菜の類型になったがであます。 たい、素菜の類型になったいであまず素がの登せる。 たい、素菜の素が可加にないたいであまず素がの登せる。 たい、素菜の素が可加にないたいたがあまた、「素菜気管売」とからたする。 たい、素菜の素が可加にないたいたいたが、 たい、素菜の素が可加にないたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいた	ギャップ熱住	云達係数 <u>(1)</u> は,燃焼期間中の変化を考慮して,解析結果	ト間のギャップ熱伝達係数は、燃焼期間中の変化を考慮して、	
 1. 生まな見が増大き、主義気管がまたいの情報であります。場合であります。 2. 生素気が増生たい、 2. 生素気が増生たい、主義気が増生したいであったの、 2. 原ナードは、主義気が増生がられたいでなど、 2. 原ナードは、主義気が増生がられたいでなど、 2. 原ナードは、主義気が増生がられたいでなど、 2. 原ナードは、主義気が増生がられたいでなど、 2. 原ナードは、 2. 原生 たきて、 2. 原ナードは、 2. 原ナードは、 2. 原ナードは、 2. 原ナードは、 3. 原ナー	を厳しくする	る値を用いる。	解析結果を厳しくする値 <u>(※)</u> を用いる。	代表的数値を用いる解
 したい、 したい、 したい、 したい、 したい、 したい、 したい、 したい、 したい、 したい、 したい、 したい、 したい、 したいた。 よるな、市政策に対率となりならりたくる。 したいた。 などのなり、 などしては、 などのなり、 などのか したいた。 などのなり、 などのなり、 などのなり、 などのか などのか などのか などのか などのか などの などの	<u>_c.</u> 4本の主素	素気管のうち1本が格納容器外で瞬時に両端破断すると仮	(c) 4本の主蒸気管のうち1本が格納容器外で瞬時に両端破断す	析条件へ注記を追加
 しない、 」と言葉のなど使用するものとする。 、所不知に、主義気気が使用なしたしま気(などの)でもものとする。 、の、ディ知に、主義気気が使用などにより定体が起こののがたの見なたれ この、ディ知に、主義気気が使用などにより定体が起こののがたの見なたれ この、ディ知に、主義気気が使用などにより定体が起こののがたの見なたれ この、ディアに、主義気気が使用などにより定体が起こののがたの見なたれ この、ディアに、主義気気が使用などのとする。 この、ディアに、主義気気が使用などのとする。 この、ディアに、主義気気が使用などのとする。 この、ディンスの気気のが集めにないでな見来が、生たまする この、ディンスの気気が使用などのとする。 この、ディンスの気気が使用などのとする。 この、ディンスの気気のが集めにないでな見来が、生たまする この、ディンスの気気が使用などのとする。 この、ディンスの気気が使用などのとする。 この、ディンスの気気が使用などのとする。 この、ディンスの気気が使用などのとする。 この、ディンスの気気が使用などのとする。 この、ディンスの気気が使用などのと、などので、 この、ディンスの気気が使用などのと、 この、ディンスの気気が使用などのと、 この、ディンスの気気が使用する。 この、ディンスの気気が使用する。 この、ディンスの気気が使用する。 この、ディンスの気気が使用する。 この、ディンスの気気が、「する、、 この、ディンスの気が、「する、、 この、ディンスのして、 この、ディンスの気気が、 この、ディンスの気が、 この、ディンスの気が、 この、ディンスの気気が、 この、ディンスの気が、 この、ディンスの気が、 この、ディンスのして、 この、ディンスの気が、 この、ディンスのして、 この、ディンスの気が、 この、ディンスの気が、 この、ディンスの気が、 この、ディンスのして、 この、ディンスのして、 この、ディンスのして、 この、ディンスのして、 この、ディンスのして、 この、ディンスのして、 この、ディンスのして、 この、ディンスのして、 この、ディンスのして、 この、 この、	定し、流出社	令却材量の評価に当たっては破断口までの摩擦損失を考慮	ると仮定し、流出冷却材量の評価に当たっては破断口までの摩	
 	しない。		擦損失を考慮しない。	
 「最も多、事故彼5.5%で全部でもものとする。 」点「方に」主素気病量が開告でスクラムするものとする。 (1)「読れ読量は、主気気病量が開告でスクラムするものとする。 (2)「読れ読量は、主気気病量が開きないためとする。 (2)「読れ読量は、た気気痛量が開きからいためとする。 (3)「読むたちる。ただ」、主素気病量が開きからいためとする。 (4)「読れ読量は、ためのの障害法でブル⁽²¹⁾を使用する。 (5)「読むたちる。ただ」、主素気病量が開きの第次において聴男恋が 会社するまでは、作による読量が濃めの第次において聴男恋が 会社することだ」、主素気病量が開きの第次にすいていた思想が、 (2)「読れ読量は、からめの障害法でブル⁽²¹⁾を使用する。 (3)「読むたちる。 (4)「読むたちる。 (4)「読むたちるのとする。 (5)「読むたちるのとする。 (5)「読むたちるのとする。 (4)「読むたちるのとする。 (5)「読むたちるのとする。 (6)「読むたちるのとする。 (7)「読むたちるのとする。 (7)「読むたちるのとする。 (9)「読むたちるのとする。 (1)「読むたま気気の置点たたちるのとする。 (2)「読むたちるのとする。 (3)「解約定量 (4)「素が保護していたち」のたちたたちろ。 (3)「解約定量 (4)「素が保護していたちまたち」、 (4)「素が保護していたち、読むたさる。 (3)「解約定量 (4)「素が保護していたびに」」 (4)「素が保護していたきごと」」 (4)「素が保護していたちまた気」 (5)「読むたちまた気」 (5)「素が保護していたちまた気」 (5)「読むたちまた気」 (5)「読むたちまた気」 (5)「読むたちまた気」 (6)「読むたちまた気」 (7)「読むたちまた気」 (7)「読むたちまた気」 (7)「算いの時においたちまた気」 (7)「算いの時においたちまた気」 (7)「算いの時においたちまた気」 (7)「算いの時においたちまた気」 (7)「算いの時においたうきたたちまた気」 (7)「算いの時でする。 (7)「算いの時でする。 (7)「算いの時ではたちまた気」 (7)「算いの時ではたちら読むたちまた気」 (7)「算いの時でするこれたちまたう」 (7)「算いの時でするこれたちまたう」 (7)「算いの時でする。 (7)「算いの時でする。 (7)「算いの時でする (7)「算いの」 (7)	<u>d.</u> 主蒸気隔离	推弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時	(d) 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅	
 ・・「原子(所成、主蒸気業種類の設計は予認において簡単流が発生するためにする。 ・・「流出洗濯紙(主要気法)(目を送気)(日本(読み))(日本(注))(日本(江))(1(1))	間を含み、雪	事故後5.5秒で全閉するものとする。	れ時間を含み,事故後5.5秒で全閉するものとする。	
 1. 読出読品は、主素気福濃和思想という定格温の200%に制限され るとする。ただし、主素気福濃和思想としう定格温の200%に制限され るとする。ただし、主素気福濃和認知になって認果読が またる。ただし、主素気福濃和認知になって認果読が たたる。ただし、主素気福濃和認知になって認果読が たたる。ただし、主素気福濃和認知で認果読が たたる。ただし、主素気福濃和認知で認果読が たたる。ただし、主素気福濃和認知で認果読が たたる。ただし、主素気福濃和認知で認果読が たたる。ただし、主素気福濃和認知で認果読が たたる。ただし、主素気福濃和認知で認果読が たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認果 たたる。ただし、主素気福濃和認知で認知で たたる。ただし、主素気福濃和認知で たたる。ただし、主素気福濃かの語がたい たんる ただし、主素気福濃かの語がたい たんる ただし、たたの たいからの ただし、たたの ただし、たんの ただし、たんの ただし、ため ただし、たたの たたて、たたの たたで、たたの たたて、たたの たたで、たかの たれいた たんの たたで たたいか たたで たた たたいか たたで たた たた	<u>e.</u> 原子炉は,	主蒸気隔離弁閉信号でスクラムするものとする。	<u>(e)</u> 原子炉は,主蒸気隔離弁閉信号でスクラムするものとする。	
 あとする。ただし、主義気障離かの強とは大変しないものとする。 では、分による流量制限の効果は大変しないものとする。 正、職界院の計算には、Moodyの施界流でアル⁽¹⁾ 正、職界院の計算には、Moodyの施界流でアル⁽²⁾ 近、市事報発生と同時に外部電纜が喪失し、単結構ポジンプ10台にDURFにしょうす。 (2) 解析方法 本事故障の意知材満出量、原子炉圧力、炉心波量、MC PR 及び燃料 被審行の流れためを気がし、ため一般能を似意する。 (2) 解析方法 本事故障の意知材満出量、原子炉圧力、炉心波量、MC PR 及び燃料 被審行の流れためを気がしている。 (1) 原子炉ドル炭症の認点から、安全保護系(主然気管流量人信号によ る主気気筋健弁開スクラム)に単一転線を仮定する。 (2) 解析方法 (2) 解析方法 本事故障の意知材満出量、原子炉圧力、炉心波量、MC PR 及び燃料 被審行の流れためを気がしてう 4⁽¹⁾(1)⁽¹⁾(1)⁽²⁾ 以上の解析の流れぬを完成3.2.1-20(に示す。) (3) 解析電気 本本なら事実気気管のうち1本が瞬時に両端破断すると、破断管を流れる 蒸気は正規上流調例の数目から読出し、他の3本の健全な管を流れる 蒸気にかっの蒸気発生をと口もので原子炉圧力は低かする。 (4本かる主義気管理したいう意味(1)上すべい、地断するので原子炉圧力ないため) (2) 解析のがするので原子炉圧力は低新するので原子炉圧力は低新するので原子炉圧力ないため 正式気気にロイズルでの構成にや計するが、同か的10%からた (4本)ないたったまする、これ以降に二相減労用するた。 (4本)など、市成市がするかで原子炉水(な)により、水面に地方の、地下する、 (5) 非常気(1) 年代のすによりの、 (5) 非常気に簡単にく、小気気(1)、1) (5) 非常気(1) 年代のすによりの、 (5) 小気(1)、(1) (5) 小気(1) (6) 小気(1) (6) 小気(1) (7) 小気(1)<td><u>f.</u>流出流量)</td><td>は、主蒸気流量制限器により定格流量の200%に制限され</td><td>(f) 流出流量は,主蒸気流量制限器により定格流量の200%に制限</td><td></td>	<u>f.</u> 流出流量)	は、主蒸気流量制限器により定格流量の200%に制限され	(f) 流出流量は,主蒸気流量制限器により定格流量の200%に制限	
 では、非による読量制限の効果は考慮しないものとする。 <u> <u> </u> <u></u></u>	るとする。1	こだし、主蒸気隔離弁の部分において臨界流が発生するま	されるとする。ただし、主蒸気隔離弁の部分において臨界流が	
 	では、弁によ	よる流量制限の効果は考慮しないものとする。	発生するまでは、弁による流量制限の効果は考慮しないものと	
 			する。	
 h. 東放逸と同時に外部電源が要失し、再循環ボンブ10台は即時にト リップするものとする。 i. 原子炉停止機能の視点から、会全保護系(主蒸気管流量大信号によ る主蒸気隔離弁問スクラム)に単一故躍を仮定する。 (2) 解析方法 本事放時の冷却特流出量、原子炉下力、炉心流量、MCPR及び燃料 被感管温度の変化の計算は、LOCA解析に用いたしAMB、SCAT 及びSAFERコードを使用して行う⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽	<u>g.</u> 臨界流の言	+算には, Moodyの臨界流モデル <u>(23)</u> を使用する。	<u>(g)</u> 臨界流の計算には,Moodyの臨界流モデルを使用する。	
 リップするものとする。 原子が停止機能の観点から、安全保護系(主蒸気管流量大信号による主蒸気端離作間スクラム)に単一故応を仮定する。 原子が停止機能の観点から、安全保護系(主蒸気管流量大信号による主蒸気端離作間スクラム)に単一故応を仮定する。 第析方法 本事成時の冷却材洗出量、原子炉圧力、炉心流量、MCPR及び燃料	<u>h.</u> 事故発生と	と同時に外部電源が喪失し、再循環ポンプ10台は即時にト	(h) 事故発生と同時に外部電源が喪失し,再循環ポンプ10台は即	
 原子炉停止機能の観点から、次金保護系(主蒸気管流量大信号による主蒸気隔離弁閉スクラム)に単一鼓障を仮定する。 第休方法 第休方法 本等故時の冷却材流出量、原子炉圧力、炉心流量、MCPR及び燃料 被覆管温度の変化の計算は、LOCA解析に用いたLAMB、SCAT 及びSAFERコードを使用して行う⁽⁴⁾(5)⁽⁶⁾(124)。 以上の解析の流れ図を第3.2.1-2回に示す。 解析結果 4本ある主蒸気管のうち1本が瞬時に両端破断すると、破断管を流れる 蒸気は直接上流側の破断口から高温ける。 東茶域市の小ちの高温し、他の3本の健全な管を流れる 蒸気は直接上流側の破断口から高出し、他の3本の健全な管を流れる 蒸気は、主蒸気に即日からら流出する。 政断口からの蒸気流に出当する決(250kg/sに増加する。この電は、 炉心での蒸気剤に加当するが成(5), 250kg/sに増加する。この電は、 炉心での蒸気剤に相当する約4, 250kg/sに増加する。この電は、 炉心での蒸気剤を準率を上回るので原子炉水位は上昇し、水面は約2.1秒で 主蒸気開解発作は、主蒸気管流量大の信号によりの、砂の動作遅れ時間 を含み事故後6.5秒で全開するが、同手が10条例出する約1.0秒後に主蒸 気腐離弁問情気が発生して、原子炉はなクラムする。同手が間止する に従って彼断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第 (1) 原子炉停止機能の観点から、次金保護剤(1)に称るこ (2) 原子炉停止機能の観点から、次金保護系(主蒸気隔離弁問スクラム)に単一載障を仮定する。 (1) 原子炉停止機能の観点から、次全保護系(主蒸気電量大)(2)に単し (1) 原子炉停止機能の観点から、次全保護系(主蒸気電量大)(2)に (1) 原子炉や小し機能の観点からの、次体になり (1) 原子炉やや機能の観点から、次本保護系(主蒸気電量大)(2)に (1) 原子炉や小しした (1) 原子炉ややし、 (2) 原子炉やや洗気 (2) 原子炉や小しした (2) 原子炉や小しした (3) 解析 (4) 原子炉や小した (4) (2) (2) (2) (4) (2) (2) (2) (5) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	リップするも	らのとする。	時にトリップするものとする。	
 	<u>i.</u> 原子炉停」	と機能の観点から,安全保護系(主蒸気管流量大信号によ	<u>(i)</u> 原子炉停止機能の観点から,安全保護系(主蒸気管流量大信	
 (2)解析方法 本事成時の治却材流出量、原子炉圧力、炉心流量,MCPR及び燃料 被彈管温度の変化の計算は、LOCA解析に用いたLAMB,SCAT 及びSAFER=-ドを使用して行う⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽¹⁾⁽	る主蒸気隔离	雌弁閉スクラム)に単一故障を仮定する。	号による主蒸気隔離弁閉スクラム)に単一故障を仮定する。	
本事故時の冷却材流出量、原子炉圧力、炉心流量、MCPR及び燃料 被覆管温度の変化の計算は、LOCA解析に用いたLAMB、SCAT 及びSAFERコードを使用して行う ⁽⁴⁾⁽⁵⁾⁽³⁾⁽²⁴⁾ 。 以上の解析の流れ図を第3.2.1-2図に示す。 (3) 解析結果 4本ある主蒸気管のうち1本が瞬時に両端破断すると、破断管を流れ る蒸気は直接上流側の破断口から流出し、他の3本の健全な管を流れる 蒸気は、主蒸気にめ并の上流側にある主蒸気ヘッダを通って破断管を逆 流し、下流側の破断口から流出する。 破断口からの蒸気流出量は、事放直前の定格流量の約102%から主蒸 気出ロノズルでの磁界流に相当する約4,250kg/sに増加する。この値は、 炉心での蒸気発生率を上回るので原子炉木位は上昇し、水面は約2.1秒で 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故袋5.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して、原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する、第3.4.2-12(1)及び第	(2) 解析方法			
 被腰管温度の変化の計算は、LOCA解析に用いたLAMB, SCAT 及びSAFERコードを使用して行う⁽⁴⁾⁽⁵⁾⁽⁶⁾⁽²⁴⁾。 以上の解析の流れ図を第3.2.1ー2図に示す。 (3) 解析結果 4本ある主蒸気管のうち1本が瞬時に両端破断すると,破断管を流れ る蒸気は直接上流側の破断口から流出し,他の3本の健全な管を流れる 蒸気は,主蒸気止め弁の上流側にある主蒸気へッダを通って破断管を逆 流し,下流側の破断口から流出する。 破断口からの蒸気流出量は,事故直前の定格流量の約102%から主蒸 気出ロノズルでの臨界流に相当する約4,250kg/sに増加する。この値は、 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉圧力は低下する。。 主蒸気隔離弁は,主蒸気管流量大の信ちにより,5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが、同弁が10%閉止する約1,0秒後に主蒸 気隔離弁ੀ信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って彼断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第 	本事故時の後	令却材流出量,原子炉圧力,炉心流量,MCPR及び燃料		
及びSAFERコードを使用して行う ⁽¹⁾⁽⁵⁾⁽⁰⁾⁽²⁴⁾ 。 以上の解析の流れ図を第3.2.1-2図に示す。 (3) 解析結果 4本ある主蒸気管のうち1本が瞬時に両端破断すると,破断管を流れる 蒸気は直接上流側の破断口から流出し,他の3本の健全な管を流れる 蒸気は、主蒸気止め弁の上流側にある主蒸気ヘッダを通って破断管を逆流し、 流し、下流側の破断口から流出する。 破断口からの蒸気流出量は、事故直前の定格流量の約102%から主蒸 気出口ノズルでの臨界流に相当する約4,250kg/sに増加する。この値は、 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉た力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上見し、水面は約2.1秒で 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して、原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-11図(1)及び第	被覆管温度の変	変化の計算は、LOCA解析に用いたLAMB、SCAT		
以上の解析の流れ図を第3.2.1-2図に示す。 (3) 解析結果 4本ある主蒸気管のうち1本が瞬時に両端破断すると,破断管を流れ る蒸気は直接上流側の破断口から流出し,他の3本の健全な管を流れる 蒸気は直接上流側の破断口から流出し,他の3本の健全な管を流れる 蒸気は,主蒸気止め弁の上流側にある主蒸気ヘッダを通って破断管を逆 流し,下流側の破断口から流出する。 破断口からの蒸気流出量は,事故直前の定格流量の約102%から主蒸 気出ロノズルでの臨界流に相当する約4,250kg/sに増加する。この値は, 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上昇し,水面は約2.1秒で 主蒸気暗距弁に,主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが,同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	及びSAFEF	Rコードを使用して行う ⁽⁴⁾⁽⁵⁾⁽⁶⁾⁽²⁴⁾ 。		
 (3) 解析結果 4本ある主蒸気管のうち1本が瞬時に両端破断すると,破断管を流れ >蒸気は直接上流側の破断口から流出し,他の3本の健全な管を流れる 蒸気は直接上流側の破断口から流出し,他の3本の健全な管を流れる 蒸気は直接上流側の破断口から流出し,他の3本の健全な管を流れる 蒸気止め弁の上流側にある主蒸気ヘッダを通って破断管を逆 流し,下流側の破断口から流出する。 破断口からの蒸気流出量は,事故直前の定格流量の約102%から主蒸 気出ロノズルでの臨界流に相当する約4,250kg/sに増加する。この値は、 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉木位は上昇し、水面は約2.1秒で 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して、原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1回(1)及び第 	以上の解析の	D流れ図を第3.2.1-2図に示す。		
 4本ある主蒸気管のうち1本が瞬時に両端破断すると、破断管を流れる 蒸気は直接上流側の破断口から流出し、他の3本の健全な管を流れる 蒸気は、主蒸気止め弁の上流側にある主蒸気ヘッダを通って破断管を逆 流し、下流側の破断口から流出する。 破断口からの蒸気流出量は、事故直前の定格流量の約102%から主蒸 気出ロノズルでの臨界流に相当する約4,250kg/sに増加する。この値は、 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上昇し、水面は約2.1秒で 主蒸気出ロノズルに達する。これ以降は二相流流出となる。 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して、原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第 	(3) 解析結果			
る蒸気は直接上流側の破断口から流出し,他の3本の健全な管を流れる 蒸気は,主蒸気止め弁の上流側にある主蒸気ヘッダを通って破断管を逆 流し,下流側の破断口から流出する。 破断口からの蒸気流出量は,事故直前の定格流量の約102%から主蒸 気出ロノズルでの臨界流に相当する約4,250kg/sに増加する。この値は, 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上昇し,水面は約2.1秒で 主蒸気出ロノズルに達する。これ以降は二相流流出となる。 主蒸気隔離弁は,主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが,同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	4本ある主義	素気管のうち1本が瞬時に両端破断すると,破断管を流れ		
蒸気は、主蒸気止め弁の上流側にある主蒸気ヘッダを通って破断管を逆 流し、下流側の破断口から流出する。 破断口からの蒸気流出量は、事故直前の定格流量の約102%から主蒸 気出ロノズルでの臨界流に相当する約4,250kg/sに増加する。この値は、 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上昇し、水面は約2.1秒で 主蒸気出ロノズルに達する。これ以降は二相流流出となる。 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して、原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	る蒸気は直接」	上流側の破断口から流出し,他の3本の健全な管を流れる		
 流し、下流側の破断口から流出する。 破断口からの蒸気流出量は、事故直前の定格流量の約102%から主蒸 気出口ノズルでの臨界流に相当する約4,250kg/sに増加する。この値は、 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上昇し、水面は約2.1秒で 主蒸気に開かた 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して、原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第 	蒸気は、主蒸気	気止め弁の上流側にある主蒸気ヘッダを通って破断管を逆		
破断口からの蒸気流出量は,事故直前の定格流量の約102%から主蒸 気出ロノズルでの臨界流に相当する約4,250kg/sに増加する。この値は, 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上昇し,水面は約2.1秒で 主蒸気出ロノズルに達する。これ以降は二相流流出となる。 主蒸気隔離弁は,主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが,同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	流し、下流側の	D破断口から流出する。		
気出ロノズルでの臨界流に相当する約4,250kg/sに増加する。この値は、 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上昇し、水面は約2.1秒で 主蒸気出ロノズルに達する。これ以降は二相流流出となる。 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して、原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	破断口からの	の蒸気流出量は、事故直前の定格流量の約102%から主蒸		
 炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原 子炉内のボイドが増加するので原子炉水位は上昇し,水面は約2.1秒で 主蒸気出口ノズルに達する。これ以降は二相流流出となる。 主蒸気隔離弁は,主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが,同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第 	気出ロノズルで	での臨界流に相当する約4,250kg/sに増加する。この値は,		
子炉内のボイドが増加するので原子炉水位は上昇し,水面は約2.1秒で 主蒸気出口ノズルに達する。これ以降は二相流流出となる。 主蒸気隔離弁は,主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが,同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	炉心での蒸気多	発生率を上回るので原子炉圧力は低下する。減圧により原		
主蒸気出口ノズルに達する。これ以降は二相流流出となる。 主蒸気隔離弁は,主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが,同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	子炉内のボイ	ドが増加するので原子炉水位は上昇し,水面は約2.1秒で		
主蒸気隔離弁は,主蒸気管流量大の信号により0.5秒の動作遅れ時間 を含み事故後5.5秒で全閉するが,同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	主蒸気出ロノス	ズルに達する。これ以降は二相流流出となる。		
を含み事故後5.5秒で全閉するが,同弁が10%閉止する約1.0秒後に主蒸 気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	主蒸気隔離き	幹は、主蒸気管流量大の信号により0.5秒の動作遅れ時間		
気隔離弁閉信号が発生して,原子炉はスクラムする。同弁が閉止するに 従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	を含み事故後5	.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸		
従って破断口からの二相流流出量は減少する。第3.4.2-1図(1)及び第	気隔離弁閉信号	号が発生して,原子炉はスクラムする。同弁が閉止するに		
	従って破断ロオ	からの二相流流出量は減少する。第3.4.2-1図(1)及び第		
3.4.2-2図(1)に事故時の冷却材流出量の時間変化及び炉心平均圧力,炉	3.4.2-2図(1)	に事故時の冷却材流出量の時間変化及び炉心平均圧力,炉		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	心流量の時間変化を示す。		
	主蒸気隔離弁が全閉するまでに破断口を通して流出する蒸気及び水の		
	量は、次の値となる。		
	蒸 気 約1.7×10 ⁴ kg		
	水 約2.9×10 ⁴ kg		
	しかしながら, 炉心が露出し始めるためには, 約8.6×10 ⁴ kgの冷却材		
	が流出しなければならないので、事故時に炉心が露出することはない。		
	事故と同時に外部電源の喪失を仮定すると、再循環ポンプの停止によ		
	り炉心流量は急激に減少する。		
	炉心流量の急激な減少により、MCPRは、事故後約0.9秒で1.07を		
	下回り、燃料集合体の上部から5番目のスペーサ位置まで沸騰遷移が生		
	じる。これに伴い、燃料被覆管から冷却材への熱伝達係数が低くなり燃		
	料被覆管の温度が上昇する。しかし、原子炉スクラムによる出力の低下		
	により燃料被覆管の温度上昇は短期間で収まる。		
	第3.4.2-3図(1)に燃料被覆管最高温度を与える位置における温度変化		
	を示すが、本事故時の燃料被覆管最高温度は約569℃である。		
	燃料棒の破裂は、事故後燃料被覆管の温度が上昇して燃料被覆管の内		
	圧による周方向応力がその温度における引張強さを超えた時点で発生す		
	る。本事故における燃料被覆管温度は、約569℃以下である。一方、本		
	原子炉の燃料棒では、事故期間中、外圧が内圧より高目に維持されるの		
	で, 第3.2.1-8図から明らかなように燃料被覆管の内圧による周方向応		
	力により燃料棒に破裂が生じることはない。		
	また、燃料被覆管の酸化層厚みの増加は、燃料被覆管温度が低いため		
	極めて小さい。		
	主蒸気隔離弁閉止後は、炉心は原子炉隔離時冷却系等により冷却され		
	る。		
	3.4.2.3.2 9×9燃料(B型)を装荷した炉心について		
	解析は、次のような仮定を用いて行う。		
	a. 原子炉は, 事政発生直前まで定格出力の約102% (熱出力4,005MW)		
	及び定格炉心流量の 111% (58.0× $10^{\circ}t/h$) で十分長時間 (2,000日)		
	運転していたものとする。また、原子炉圧刀の初期値は7.17MPa		
	[gage] とする。MUPKの初期値は美除には通常運転時の熱的制限値(1, oo) ためまたとくなることはないが、「ooot」 医スピン 把出ませた		
	(1.22) よりも小さくなることはないか,「3.2.1 原子炉冷却材喪矢」		
	び用いているものと回し個を用いることとし、1.19とする。 1 細七に用いて見上始出土空店は、予告にたちも毎日四付です。		
	b. 解析に用いる東大線出刀密度は、通常運転時の熟的制限値である		
	44.0KW/mの102% じめるとする。よた, 燃料 彼復官 とヘレット 間の ギャップ 勅仁 志 仮粉 (7) は、 敏 陸 即 明 中 の 恋 ひき 老 唐 レ ケ (初生) 付用		
	イヤツノ 漱四 運 (ボ 級) 、 は ,		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	を厳しくする値を用いる。		
	c. 4本の主蒸気管のうち1本が格納容器外で瞬時に両端破断すると仮		
	定し、流出冷却材量の評価に当たっては破断口までの摩擦損失を考慮		
	しない。		
	d. 主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時		
	間を含み、事故後5.5秒で全閉するものとする。		
	e. 原子炉は, 主蒸気隔離弁閉信号でスクラムするものとする。		
	f. 流出流量は,主蒸気流量制限器により定格流量の200%に制限され		
	るとする。ただし、主蒸気隔離弁の部分において臨界流が発生するま		
	では、弁による流量制限の効果は考慮しないものとする。		
	g. 臨界流の計算には, Moodyの臨界流モデル ⁽²³⁾ を使用する。		
	h. 事故発生と同時に外部電源が喪失し,再循環ポンプ10台は即時にト		
	リップするものとする。		
	i. 原子炉停止機能の観点から,安全保護系(主蒸気管流量大信号によ		
	る主蒸気隔離弁閉スクラム)に単一故障を仮定する。		
	(2) 解析方法		
	本事故時の冷却材流出量,原子炉圧力,炉心流量,MCPR及び燃料		
	被覆管温度の変化の計算は、LOCA解析に用いたLABEL、FRA		
	NCESCA及びSALUTEコードを使用して行う $^{(8)}$ 。		
	以上の解析の流れ図を第3.2.1-2図に示す。		
	(3) 解析結果		
	4本ある主蒸気管のうち1本が瞬時に両端破断すると、破断管を流れ		
	る蒸気は直接上流側の破断口から流出し、他の3本の健全な管を流れる		
	蒸気は、主蒸気止め弁の上流側にある主蒸気ヘッダを通って破断管を逆		
	流し、下流側の破断口から流出する。		
	破断口からの蒸気流出量は,事故直前の定格流量の約102%から主蒸		
	気出口ノズルでの臨界流に相当する約4,250kg/sに増加する。この値は,		
	炉心での蒸気発生率を上回るので原子炉圧力は低下する。減圧により原		
	子炉内のボイドが増加するので原子炉水位は上昇し,水面は約2.1秒で		
	主蒸気出口ノズルに達する。これ以降は二相流流出となる。		
	主蒸気隔離弁は、主蒸気管流量大の信号により0.5秒の動作遅れ時間		
	を含み事故後5.5秒で全閉するが、同弁が10%閉止する約1.0秒後に主蒸		
	気隔離弁閉信号が発生して、原子炉はスクラムする。同弁が閉止するに		
	従って破断口からの二相流流出量は減少する。第3.4.2-1図(2)及び第		
	3.4.2-2図(2)に事故時の冷却材流出量の時間変化及び炉心平均圧力,炉		
	心流量の時間変化を示す。		
	主蒸気隔離弁が全閉するまでに破断口を通して流出する蒸気及び水の		
	量は、次の値となる。		
	蒸 気 約1.7×10 ⁴ kg		
頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
---	--	---	----
	水 約 2.9×10 ⁴ kg		
	しかしながら,炉心が露出し始めるためには,約8.6×10 ⁴ kgの冷却材		
	が流出しなければならないので、事故時に炉心が露出することはない。		
	事故と同時に外部電源の喪失を仮定すると、再循環ポンプの停止によ		
	り炉心流量は急激に減少する。		
	炉心流量の急激な減少により、MCPRは、事故後約0.6秒で1.07を		
	下回り,燃料集合体の上部から5番目のスペーサ位置まで沸騰遷移が生		
	じる。これに伴い、燃料被覆管から冷却材への熱伝達係数が低くなり燃		
	料被覆管の温度が上昇する。しかし、原子炉スクラムによる出力の低下		
	により燃料被覆管の温度上昇は短期間で収まる。		
	第3.4.2-3図(2)に燃料被覆管最高温度を与える位置における温度変化		
	を示すが、本事故時の燃料被覆管最高温度は約567℃である。		
	燃料棒の破裂は、事故後燃料被覆管の温度が上昇して燃料被覆管の内		
	圧による周方向応力がその温度における引張強さを超えた時点で発生す		
	る。本事故における燃料被覆管温度は、約567℃以下である。一方、本		
	原子炉の燃料棒では、事故期間中、外圧が内圧より高目に維持されるの		
	で, 第3.2.1-8図から明らかなように燃料被覆管の内圧による周方向応		
	力により燃料棒に破裂が生じることはない。		
	また、燃料被覆管の酸化層厚みの増加は、燃料被覆管温度が低いため		
	極めて小さい。		
	主蒸気隔離弁閉止後は、炉心は原子炉隔離時冷却系等により冷却され		
	る。		
	3.4.2.4 核分裂生成物の放出量及び線量の評価 (21) (22)		
	3.4.2.4.1 核分裂生成物の放出量		
	(1) 解析条件		
	事故時の核分裂生成物の移行と放出量の評価は、次の仮定に基づいて		
	行う。		
	<u>a</u> .事故発生時の冷却材中の核分裂生成物の濃度は、運転上許容される	<u>(j)</u> 事故発生時の冷却材中の核分裂生成物の濃度は,運転上許容	
	I-131の最大濃度である1.3×10 ³ Bq/gに相当するものとし,その組	される I -131の最大濃度である1.3×10 ³ Bq/gに相当するもの	
	成を拡散組成とする。気相中の放射性ハロゲン(以下「ハロゲン」と	とし、その組成を拡散組成とする。気相中の放射性ハロゲン(以	
	いう。)の濃度は、液相中の濃度の2%とする。 <u>各核種の濃度を第</u>	下「ハロゲン」という。)の濃度は、液相中の濃度の2%とする。	
	<u>3.4.2-1表に示す。</u>		
	<u>b.「3.4.2.3 事故経過の解析」に示したように</u> 事故発生後,新たに燃	(k) 事故発生後,新たに燃料棒の破損は生じないので,原子炉圧	
	料棒の破損は生じないので、原子炉圧力の低下に伴う燃料棒からの核	力の低下に伴う燃料棒からの核分裂生成物の追加放出量は, I	
	分裂生成物の追加放出量は、I-131については先行炉等での実測値	-131については先行炉等での実測値の平均値に適切な余裕を	
	の平均値に適切な余裕をみた値である3.7×10 ¹³ Bqとし,その他の核	みた値である3.7×10 ¹³ Bqとし,その他の核分裂生成物について	
	分裂生成物についてはその組成を平衡組成として求め、希ガスについ	はその組成を平衡組成として求め、希ガスについては放射性よ	
	ては放射性よう素(以下「よう素」という。)の2倍の放出があるも	う素(以下「よう素」という。)の2倍の放出があるものとする。	
	のとする。各核種の追加放出量を第3.4.2-1表に示す。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>c</u> . 主蒸気隔離弁閉止前の燃料棒からの核分裂生成物の追加放出に関し	(1) 主蒸気隔離弁閉止前の燃料棒からの核分裂生成物の追加放出	
	ては、主蒸気隔離弁閉止前の原子炉圧力の低下割合に比例して放出さ	に関しては、主蒸気隔離弁閉止前の原子炉圧力の低下割合に比	
	れるものとするが、主蒸気隔離弁までの到達時間を考慮し、追加放出	例して放出されるものとするが、主蒸気隔離弁までの到達時間	
	された核分裂生成物が主蒸気隔離弁閉止までに破断口から放出される	を考慮し、追加放出された核分裂生成物が主蒸気隔離弁閉止ま	
	ことはないものとする。	でに破断口から放出されることはないものとする。	
	<u>d</u> . 主蒸気隔離弁閉止後の燃料棒からの核分裂生成物の追加放出に関し	(m) 主蒸気隔離弁閉止後の燃料棒からの核分裂生成物の追加放出	
	ては、原子炉圧力の低下割合に比例して冷却材中へ放出されるものと	に関しては、原子炉圧力の低下割合に比例して冷却材中へ放出	
	する。	されるものとする。	
	<u>e.</u> 燃料棒から放出されるよう素のうち有機よう素は4%とし、残りの	(n) 燃料棒から放出されるよう素のうち有機よう素は4%とし,	
	96%は無機よう素とする。	残りの96%は無機よう素とする。	
	<u>f.</u> 燃料棒から追加放出される核分裂生成物のうち、希ガスはすべて瞬	(o) 燃料棒から追加放出される核分裂生成物のうち、希ガスはす	
	時に気相部に移行するものとする。有機よう素のうち10%は、瞬時に	べて瞬時に気相部に移行するものとする。有機よう素のうち	
	気相部に移行するものとし、残りは分解するものとする。有機よう素	10%は、瞬時に気相部に移行するものとし、残りは分解するも	
	が分解したよう素、無機よう素及びよう素以外のハロゲンが気相部に	のとする。有機よう素が分解したよう素、無機よう素及びよう	
	キャリーオーバーされる割合は2%とする。	素以外のハロゲンが気相部にキャリーオーバーされる割合は 2%とする。	
	g. 放射能閉じ込め機能の観点から,主蒸気隔離弁に単一故障を仮定す	(p) 放射能閉じ込め機能の観点から,主蒸気隔離弁に単一故障を	
	るものとして、8個の主蒸気隔離弁のうち1個が閉止しないものとし、	仮定するものとして、8個の主蒸気隔離弁のうち1個が閉止し	
	閉止した7個の主蒸気隔離弁から蒸気が漏えいするものとする。各主	ないものとし、閉止した7個の主蒸気隔離弁から蒸気が漏えい	
	蒸気隔離弁の閉止直後の漏えい率は,設計漏えい率の上限値10%/d	するものとする。各主蒸気隔離弁の閉止直後の漏えい率は、設	
	(逃がし安全弁最低設定圧力において, 圧力容器気相の体積に対し,	計漏えい率の上限値10%/d(主蒸気逃がし安全弁最低設定圧力	
	飽和蒸気で)とし、4本の主蒸気管で7個閉止という条件を考慮して	において, 圧力容器気相の体積に対し, 飽和蒸気で)とし, 4	
	全体で30%/dの漏えい率とする。その後の漏えい率は,原子炉の圧力	本の主蒸気管で7個閉止という条件を考慮して全体で30%/dの	
	及び温度に依存して変化するものとする。	漏えい率とする。その後の漏えい率は、原子炉の圧力及び温度	
		に依存して変化するものとする。	
	<u>h.</u> 王烝気隔離并閉止後, 逃がし安全并等を通して崩壊烈相当の烝気が	(q) 王烝気隔離弁閉止後, 逃がし安全弁等を通して崩壊熱相当の	
	サブレッションチェンバ内のブール水中に移行するものとし、その蒸	蒸気がサブレッションチェンバ内のブール水中に移行するもの	
	気流量は圧力容器気相の体積の320倍/dとする。この蒸気に含まれる	とし、その蒸気流量は圧力容器気相の体積の320倍/dとする。こ	
	核分裂生成物は、被はくには寄与しないものとする。	の蒸気に含まれる核分裂生成物は、被はくには寄与しないもの とする。	
	<u>i</u> . 主蒸気隔離弁閉止後,原子炉圧力は,逃がし安全弁,原子炉隔離時	(r) 主蒸気隔離弁閉止後,原子炉圧力は,逃がし安全弁,原子炉	
	冷却系及び残留熱除去系によって24時間で直線的に大気圧にまで減圧	隔離時冷却系及び残留熱除去系によって24時間で直線的に大気	
	され、主蒸気系からの漏えいは停止するものとする。	圧にまで減圧され、主蒸気系からの漏えいは停止するものとす	
	: ないびい凄晰はになりたちなながになまが八切したとるま、何がし	 ○。 (二) カービン津飾中に共山された大地とこまが八切したとこま 	
	<u>」・</u> クービン建物内に放田されに有機より茶か分解しにより茶, 悪機よ	<u>(S)</u> タービン建物内に放田されに有機より茶が分解しにより茶, 無機上るま、上るまいめの、ロビングは500/ジェー 時間に対差	
	リ系、より系以外のハロクン等は50%が床、壁等に沉着するものとす	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
	る。布ルヘ及い11 (歳よう系に)してはこの)効果は考えないものとする。	9 つものと9 つ。布刀人及い月機より茶に関してはこの効果は 考えないたのとする	
		与んはいものとする。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	 <u>k.</u>主蒸気隔離弁閉止前に破断口から放出された冷却材は、完全蒸発し、 同時に放出された核分裂生成物を均一に含む蒸気雲になるものと仮定 する。 <u>1.</u>主蒸気隔離弁閉止後に主蒸気系から漏えいした核分裂生成物は、大 気中に地上放散されるものとする。 (2) 解析結果 上記の解析条件に基づいて計算した核分裂生成物の大気中への放出量 は第3.4.2-2表のとおりである。 なお、希ガス及びハロゲン等が大気中に放出されるまでの過程を第 3.4.2-4図及び第3.4.2-5図に示す。 	 (t) 主蒸気隔離弁閉止前に破断口から放出された冷却材は、完全 蒸発し、同時に放出された核分裂生成物を均一に含む蒸気雲に なるものと仮定する。 (u) 主蒸気隔離弁閉止後に主蒸気系から漏えいした核分裂生成物 は、大気中に地上放散されるものとする。 	
	 3.4.2.4.2 線量の評価 (1) 評価前提 大気中へ放出される核分裂生成物は、タービン建物から地上放散されるものとし、これによる実効線量の計算は、次の仮定に基づいて行う。 a. 主蒸気隔離弁閉止前に放出された核分裂生成物を含む冷却材は、高温低湿状態の外気中で完全蒸発し、半球状の蒸気雲を形成するものとする。この場合、蒸気雲が小さいほど実効線量が高くなり、外気条件として温度が高く、相対湿度が低いほど蒸気雲は小さくなる。本評価では、蒸気雲の大きさを求めるに当たり、温度として35%を用いる。 b. この半球状の蒸気雲は、短時間放出を考慮して風下方向に1m/sの速度で移動するものとする。 c. 主蒸気隔離弁閉止後、主蒸気隔離弁を通して大気中へ放出される核分裂生成物による敷地境界外の地表空気中濃度は、<u>添付書類六の「2.5 安全解析に使用する気象条件」に記述する</u>相対濃度に核分裂生成物の全放出量を乗じて求める。 	 (v) 主蒸気隔離弁閉止前に放出された核分裂生成物を含む冷却材は、高温低湿状態の外気中で完全蒸発し、半球状の蒸気雲を形成するものとする。この場合、蒸気雲が小さいほど実効線量が高くなり、外気条件として温度が高く、相対湿度が低いほど蒸気雲は小さくなる。本評価では、蒸気雲の大きさを求めるに当たり、温度として35℃、相対湿度として35%を用いる。 (w) この半球状の蒸気雲は、短時間放出を考慮して風下方向に1m/sの速度で移動するものとする。 (x) 主蒸気隔離弁閉止後、主蒸気隔離弁を通して大気中へ放出される核分裂生成物による敷地境界外の地表空気中濃度は、現地における2005年1月から2005年12月までの気象観測による実測値及び実効放出継続時間より求めた相対濃度に核分裂生成物の全放出量を乗じて求める。 	
	<u>d.</u> また,敷地境界外の希ガス及びハロゲン等によるγ線空気カーマは, <u>添付書類六の「2.5 安全解析に使用する気象条件」に記述する</u> 相対線 量に希ガス及びハロゲン等の全放出量を乗じて求める。	また,敷地境界外の希ガス及びハロゲン等によるγ線空気カ ーマは, <u>現地における2005年1月から2005年12月までの気象観</u> <u>測による実測値及び実効放出継続時間より求めた</u> 相対線量に希 ガス及びハロゲン等の全放出量を乗じて求める。	
	 e. なお、よう素以外のハロゲン等の内部被ばくによる実効線量は、よう素の内部被ばくによる実効線量に比べて十分小さいためその評価は省略する。 (2)評価方法 敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算する。 a、よう素の吸入による内部被ばく 	なお,よう素以外のハロゲン等の内部被ばくによる実効線量 は,よう素の内部被ばくによる実効線量に比べて十分小さいた めその評価は省略する。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(a) 主蒸気隔離弁閉止前		
	流出した冷却材が外気中で完全蒸発し、半球状の蒸気雲になるも		
	のとする。この半球状の蒸気雲が風により地上を移動する際のよう		
	素の内部被ばくによる実効線量H11(Sv)は,(3.4-2)式で計算す		
	る。		
	$H_{I1} = \frac{Q_I}{V} \mathbf{R} \cdot \mathbf{H}_{\infty} \cdot \frac{\alpha}{u} \qquad \dots $		
	ここで,		
	QI : よう素の放出量 (Bq)		
	(I-131 等価量一小児実効線量係数換算)		
	V : 半球状の蒸気雲の体積 (3.73×10 ⁶ m ³)		
	R :呼吸率 (m ³ /s)		
	呼吸率 R は,事故期間が比較的短いことを考慮し,活		
	動時の呼吸率 0.31m ³ /h を秒当たりに換算して用いる。		
	H∞ :よう素 (Ⅰ−131)を1Bq 吸入した場合の小児の実効		
	線量 (1.6×10 ⁻⁷ Sv/Bq)		
	また, 第3.4.2−3表には I −131の影響を1とした場		
	合の他のよう素核種の影響の割合をKrとして示す。		
	α : 半球状の蒸気雲の直径(242m)		
	u : 蒸気雲の移動の評価のための風速 (1m/s)		
	なお、蒸気雲が敷地境界外に達するまでの間に核分裂生成物が崩		
	壊することは考慮しない。		
	(b) 主蒸気隔離弁閉止後		
	よう素の内部被ばくによる実効線量H12(Sv)は, (3.4-3)式で		
	計算する。		
	$H_{I2} = R \cdot H_{\infty} \cdot \chi / Q \cdot QI \cdots (3.4-3)$		
	ここで、		
	R :呼吸率 (m³/s)		
	呼吸率Rは,事故期間が比較的短いことを考慮し,		
	活動時の呼吸率 0.31m³/h を秒当たりに換算して用い		
	る。		
	H∞ :よう素(Ⅰ-131)を1Bq 吸入した場合の小児の実効		
	線量(1.6×10 ⁻⁷ Sv/Bq)		
	また, 第 3. 4. 2−3 表には I −131 の影響を 1 とした		
	場合の他のよう素核種の影響の割合をKrとして示		
	す。		
	χ / Q :相対濃度 (s/m^3)		
	QI : 事故期間中のよう素の大気放出量 (Bq)		
	(I-131 等価量-小児実効線量係数換算)		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	b. 希ガス及びハロゲン等のγ線による外部被ばく ⁽²⁵⁾		
	(a) 主蒸気隔離弁閉止前		
	半径 r の半球状の蒸気雲に核分裂生成物が一様に分布している場		
	合,半球底部の中心点における希ガス及びハロゲン等のγ線外部被		
	ばくによる実効線量 H _{γ1} (Sv)は, (3.4-4)式で計算する。		
	$H_{\gamma 1} = 6.2 \times 10^{\cdot 14} \frac{Q_{\gamma}}{V} E_{\gamma} \cdot \frac{\alpha}{u} \cdot (1 \cdot e^{-\mu \cdot r}) \qquad \dots $		
	ここで、		
	Qy : 蒸気雲中の核分裂生成物量 (Bq)		
	(γ線実効エネルギ 0.5MeV 換算値)		
	V : 半球状の蒸気雲の体積 (3.73×10 ⁶ m ³)		
	E _γ :γ線のエネルギ (0.5MeV)		
	μ :空気に対するγ線のエネルギ吸収係数 (3.9×10 ⁻³ /m)		
	α : 半球状の蒸気雲の直径 (242m)		
	u :蒸気雲の移動の評価のための風速 (1m/s)		
	(b) 主蒸気隔離弁閉止後		
	主蒸気隔離弁閉止後、主蒸気隔離弁を通して漏えいしてくる希ガ		
	ス及びハロゲン等のγ線外部被ばくによる実効線量H _{γ2} (Sv)は,		
	「3.4.1 放射性気体廃棄物処理施設の破損」の3.4.1.3.2の(2)に		
	おいて希ガスのγ線外部被ばくによる実効線量を求める際に用いた		
	(3.4-1) 式で計算する。		
	(3) 評価結果		
	上記の評価方法に基づき敷地境界外の実効線量を評価した結果は、第		
	3.4.2-4表のとおり約6.8×10 ⁻² mSvである。		
	上記の値から判断して、本事故による周辺の公衆に与える放射線被ば		
	くのリスクは十分に小さいものと考えられる。		
	3.4.2.5 判断基準への適合性の検討		
	本事故に対する判断基準は、新たに燃料棒の破損が生じないことを確認		
	した上で,「1.1.2.3 判断基準」の(5)を満足することである。		
	「3.4.2.3 事故経過の解析」で示したように、本事故により破裂の発生		
	する燃料棒はない。また、燃料被覆管の温度の最高値は、1,200℃以下で		
	あり、燃料被覆管の酸化層厚みの増加量は、酸化反応が著しくなる前の燃		
	料被覆管厚さの 15%以下であるので,冷却可能な形状を維持し,冷却能力		
	が失われることはない。したがって、本事故により新たに燃料棒の破損は		
	生じない。		
	さらに,「3.4.2.4.2 線量の評価」で示したように,本事故により周辺		
	の公衆に対し,著しい放射線被ばくのリスクを与えることはなく,		
	「1.1.2.3 判断基準」の(5)は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>3.4.3</u> 燃料集合体の落下	<u>c.</u> 燃料集合体の落下	
	3.4.3.1 原 因		
	原子炉の燃料交換時に、燃料取替機の故障、破損等により燃料集合体が	原子炉の燃料交換時に、燃料取替機の故障、破損等により燃料	
	落下して破損し、放射性物質が環境に放出される <u>可能性がある。</u>	集合体が落下して破損し,放射性物質が環境に放出される <u>事象を</u>	
		想定する。	
	3.4.3.2 事故防止対策及び事故拡大防止対策		
	(1) 事故防止対策		
	燃料集合体の落下を防止するため、次のような設計及び運転管理上の		
	対策を講じる。		
	a. 燃料取替機は、燃料集合体の総重量を十分上回る重量に耐えること		
	のできる強度に設計する。		
	b. 燃料つかみ機のワイヤを二重化する。		
	c. 燃料つかみ機は, 圧縮空気が喪失した場合, 燃料集合体が外れない		
	フェイル・セイフ設計とする。		
	d. 燃料つかみ機が燃料集合体を確実につかんでいない場合には, 吊上		
	げができないようなインターロックを設ける。		
	e. 運転要領を十分整備し、よく訓練された監督者の直接指揮下で燃料		
	取替作業を行う運転管理体制をとる。		
	(2) 事故拡大防止対策		
	上記の事故防止対策にもかかわらず、万一、燃料集合体の落下が発生		
	した場合には、以下の対策により事故の拡大防止を図る。		
	a. 燃料取替エリアモニタの燃料取替エリア放射能高の信号によ		
	り,非常用ガス処理系を自動起動し,放射性ガスを直接大気中に		
	放出しないようにする。		
	3.4.3.3 核分裂生成物の放出量及び線量の評価 (21)(22)		
	3.4.3.3.1 核分裂生成物の放出量		
	(1) 破損燃料棒の評価		
	本事故時に破損する燃料棒の本数は、次の仮定に基づいて評価する。		
	a. 燃料取替作業に際し、炉心の上部で取扱中の燃料集合体1体が操作		
	上の最高の位置(炉心内の燃料集合体最上部より11m上方)から炉心		
	に落下したとする。		
	b. 落下による燃料棒の破損本数は、落下した燃料集合体が炉心内の燃		
	料集合体と数度にわたって非弾性衝突を起こすとして、曲げ変形、圧		
	縦変形によって燃料被復営が破損するものとし最大限の数を見込むも ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
	のとする。		
	上記の解析条件に基づき本事故時に破損する燃料棒の本数を評価した		
	結果は燃料集合体に換算して2.3体相当以下となる。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(2) 解析条件 事故時の核分裂生成物の移行と放出量の評価は,次の仮定に基づいて 行う。		
	 a. 燃料ギャップ内の核分裂生成物の量は、原子炉が定格出力の約 102%(熱出力4,005MW)で十分長時間(2,000日)運転された取替 炉心のサイクル末期の最大出力燃料集合体について行う。 b. 燃料取替作業は、原子炉停止後適切な冷却及び所要作業期間(1日) 後に行われるものとし、原子炉停止後の放射能の減衰は考えるものと する。 c. 破損した燃料棒のギャップ内核分裂生成物の全量が水中に放出され るものとする。破損した燃料棒のギャップ内核分裂生成物の存在量に ついては、最大出力燃料集合体であることを考えて、破損した燃料棒 内の全蓄積量に対して希ガス10%、よう素5%とする。 	 (a) 燃料ギャップ内の核分裂生成物の量は、原子炉が定格出力の約102%(熱出力4,005MW)で十分長時間(2,000日)運転された取替炉心のサイクル末期の最大出力燃料集合体について行う。 (b) 燃料取替作業は、原子炉停止後適切な冷却及び所要作業期間(1日)後に行われるものとし、原子炉停止後の放射能の減衰は考えるものとする。 (c) 破損した燃料棒のギャップ内核分裂生成物の全量が水中に放出されるものとする。破損した燃料棒のギャップ内核分裂生成物の存在量については、最大出力燃料集合体であることを考えて、破損した燃料棒内の全蓄積量に対して希ガス10%、よう素5%とする。 	
	 <u>d.</u>放出された希ガスは、全量が水中から原子炉棟の空気中へ移行するものとする。 <u>e.</u>燃料取替作業は原子炉停止1日後としており、燃料及び冷却材温度は低下しているので、放出されたよう素のうち1%は有機状とし、すべて原子炉棟内に移行するものとする。 <u>f.</u>水中へ放出された無機よう素の水中での除染係数は500とする。 	 (d) 放出された希ガスは、全量が水中から原子炉棟の空気中へ移行するものとする。 (e) 燃料取替作業は原子炉停止1日後としており、燃料及び冷却材温度は低下しているので、放出されたよう素のうち1%は有機状とし、すべて原子炉棟内に移行するものとする。 (f) 水中へ放出された無機よう素の水中での除染係数は500とする 	
	 g. 燃料取替エリア放射能高の信号により直ちに非常用ガス処理系が起動するものとする。 h. 非常用ガス処理系よう素用チャコールフィルタのよう素の除去効率は,設計上定められた最小値(99.99%)を用いるものとする。 	 (g) 燃料取替エリア放射能高の信号により直ちに非常用ガス処理 系が起動するものとする。 (h) 非常用ガス処理系よう素用チャコールフィルタのよう素の除 去効率は,設計上定められた最小値(99.99%)を用いるものと する 	
	 非常用ガス処理系の容量は、設計で定められた値(0.5回/d)とする。 原子炉棟内の核分裂生成物からの直接ガンマ線(以下「直接線」という。)及びスカイシャインガンマ線(以下「スカイシャイン線」という。)による実効線量の評価に当たっては、破損した燃料棒から原子炉棟に放出された核分裂生成物が全て原子炉棟燃料取替床階に分布するものとする。 上原子炉棟内に放出された核分裂生成物は非常用ガス処理系で処理された後、非常用ガス処理系の排気管から大気中に放出されるものとする。 放射能閉じ込め機能の観点から、非常用ガス処理系の動的機器に単いた使また使まする。 	 9 ゆ。 (i) 非常用ガス処理系の容量は,設計で定められた値(0.5回/d)とする。 (j) 原子炉棟内の核分裂生成物からの直接ガンマ線(以下「直接線」という。)及びスカイシャインガンマ線(以下「スカイシャイン線」という。)による実効線量の評価に当たっては,破損した燃料棒から原子炉棟に放出された核分裂生成物が全て原子炉棟燃料取替床階に分布するものとする。 (k) 原子炉棟内に放出された核分裂生成物は非常用ガス処理系で処理された後,非常用ガス処理系の排気管から大気中に放出されるものとする。 (1) 放射能閉じ込め機能の観点から,非常用ガス処理系の動的機四に単一地除な伝定する。 	

(3) 解析結果 上記の解析条件に基づいて計算した核分裂生成物の大気中への放出量	
上記の解析条件に基づいて計算した核分裂生成物の大気中への放出量	
は第3.4.3-1表のとおりである。	
また,原子炉棟燃料取替床階の核分裂生成物によるγ線積算線源強度	
を第3.4.3-2表に示す。	
なお、希ガス及びよう素が大気中に放出されるまでの過程を第	
3.4.3-1図及び第3.4.3-2図に示す。	
3.4.3.3.2 線量の評価	
(1) 評価前提	
大気中へ放出される核分裂生成物は、非常用ガス処理系の排気管から	
放出されるものとし、これによる実効線量並びに原子炉棟燃料取替床階	
の核分裂生成物からの直接線及びスカイシャイン線による実効線量の	
計算は、次の仮定に基づいて行う。	
<u>a</u> .敷地境界外の地表空気中濃度は,添付書類六の「2.5 安全解析に (m) 敷地境界外の地表空気中濃度は,現地における2005年	1月か
使用する気象条件」に記述する相対濃度に核分裂生成物の全放出量を ら2005年12月までの気象観測による実測値及び実効放出	継続時
乗じて求める。 乗じて求める。 <u>間より求めた</u> 相対濃度に核分裂生成物の全放出量を乗じ	て求め
る。	
<u> b.</u> 敷地境界外の希ガスによるγ線空気カーマは、添付書類六の「2.5 (n) 敷地境界外の希ガスによるγ線空気カーマは、現地に	おける
安全解析に使用する気象条件」に記述する相対線量に希ガスの全放出 2005年1月から2005年12月までの気象観測による実測値	及び実
量を乗じて求める。 量を乗じて求める。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	を乗じ
<u> </u>	
床階の核分裂生成物によるγ線積鼻線源強度を用い、原子炉建物の遮 ・ い効果た考慮してまゆる	
「小切朱を考慮して求める。」「小陸物の遮へい効果を考慮して求める。	
重及 O /r ⁱⁿ /版は、による天効旅重の和として可昇する。 上う妻の内部被げくによる実効線量Hr (Sr) け 「3 4 9 主苏気管破	
くによる実効線量を求める際に用いた(3 4-3)式で計算する	
= tr 希ガスの v 線外部被ばくによる実効線量H _v (Sv) は [3 4 1 放射]	
性気体廃棄物処理施設の破損 $03.4.1.3.20(2)$ において、希ガスの γ	
線外部被ばくによる実効線量を求める際に用いた(3.4-1)式で計算す	
また、直接線及びスカイシャイン線の外部被ばくによる実効線量は、直	
接線についてはQADコード、スカイシャイン線についてはANISN及	
びG-33コードにより求めた γ線空気カーマに換算係数(1 Sv/Gv)を	
乗じて評価する。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(3) 評価結果		
	上記の評価方法に基づき敷地境界外の実効線量を評価した結果は、第		
	3.4.3-2表のとおり約1.6×10 ⁻¹ mSvである。	≻ 比較表 P.123 参照	
	上記の値から判断して、本事故による周辺の公衆に与える放射線被ば		
	くのリスクは十分に小さいものと考えられる。		
	3.4.3.4 判断基準への適合性の検討		
	本事故に対する判断基準は,「1.1.2.3 判断基準」の(5)である。		
	「3.4.3.3.2 線量の評価」で示したように、本事故により周辺の公衆に		
	対し,著しい放射線被ばくのリスクを与えることはなく,「1.1.2.3 判断		
	基準」の(5)は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>3.4.4</u> 原子炉冷却材喪失	<u>d.</u> 原子炉冷却材喪失	
	3.4.4.1 原 因		
	本事故の原因は、「3.2.1.1 原因」に記載されたものと同様である。	「(i) 原子炉冷却材の喪失又は炉心冷却状態の著しい変化,	
		a. 原子炉冷却材喪失」で想定した原子炉冷却材喪失の際に, 放	
		<u>射性物質が環境に放出される事象を想定する。</u>	
	3.4.4.2 事故防止対策及び事故拡大防止対策		
	本事故の事故防止対策及び事故拡大防止対策は、「3.2.1.2 事故防止対		
	策及び事故拡大防止対策」に記載されたものと同様である。		
	3.4.4.3 核分裂生成物の放出量及び線量の評価 ⁽²¹⁾⁽²²⁾		
	3.4.4.3.1 核分裂生成物の放出量		
	(1) 解析条件		
	事故時の核分裂生成物の移行と放出量の評価は、次の仮定に基づいて		
	行う。		
	<u>a.</u> 原子炉は,事故直前まで定格出力の約102% (熱出力4,005MW) で	<u>(a)</u> 原子炉は,事故直前まで定格出力の約102% (熱出力4,005MW)	
	十分長時間(2,000日)運転していたものとする。	で十分長時間(2,000日)運転していたものとする。	
	<u>b</u> .事故発生時の冷却材中の核分裂生成物の濃度は、運転上許容される	(b) 事故発生時の冷却材中の核分裂生成物の濃度は,運転上許容	
	Ⅰ-131の最大濃度である1.3×10 ³ Bq/gに相当するものとし,その組	される I -131の最大濃度である1.3×10 ³ Bq/gに相当するものと	
	成を拡散組成とする。各核種の濃度を第3.4.2-1表に示す。	し、その組成を拡散組成とする。	
	<u>c.「3.2.1.3</u> 事故経過の解析」に示したように事故発生後新たに燃料	(c) 事故発生後新たに燃料棒の破損は生じないので,原子炉圧力	
	棒の破損は生じないので、原子炉圧力の低下に伴う燃料棒からの核分	の低下に伴う燃料棒からの核分裂生成物の追加放出量は, I-	
	裂生成物の追加放出量は, I-131については先行炉等での実測値の	131については先行炉等での実測値の平均値に適切な余裕をみ	
	平均値に適切な余裕をみた値である3.7×10 ¹³ Bqとし,その他の核分	た値である3.7×10 ¹³ Bqとし,その他の核分裂生成物については	
	裂生成物についてはその組成を平衡組成として求め、希ガスについて	その組成を平衡組成として求め,希ガスについてはよう素の2	
	はよう素の2倍の放出があるものとする。各核種の追加放出量を第	倍の放出があるものとする。	
	3.4.2-1表に示す。		
	<u>d.</u> 燃料棒から格納容器内に放出されたよう素のうち,有機よう素は	<u>(d)</u> 燃料棒から格納容器内に放出されたよう素のうち,有機よう	
	4%とし,残りの96%は無機よう素とする。	素は4%とし、残りの96%は無機よう素とする。	
	<u>e.</u> 無機よう素については、50%が格納容器内部に沈着し、漏えいに寄	<u>(e)</u> 無機よう素については, 50%が格納容器内部に沈着し, 漏え	
	与しないものとする。さらに、無機よう素が格納容器スプレイ水によ	いに寄与しないものとする。さらに、無機よう素が格納容器ス	
	って除去され、あるいはサプレッションチェンバ内のプール水に溶解	プレイ水によって除去され、あるいはサプレッションチェンバ	
	する割合は,無機よう素については分配係数で示して100とする。	内のプール水に溶解する割合は、無機よう素については分配係	
	有機よう素及び希ガスについてはこれらの効果を無視するものとす	数で示して100とする。有機よう素及び希ガスについてはこれら	
	る。	の効果を無視するものとする。	
	<u>f.</u> 格納容器内での核分裂生成物の崩壊を考慮する。	<u>(f)</u> 格納容器内での核分裂生成物の崩壊を考慮する。	
	<u>g.</u> 格納容器の漏えい率は, <u>「3.5.1.3</u> 事故経過の解析」に示す事故時	<u>(g)</u> 格納容器の漏えい率は, <u>「(iv) 原子炉格納容器内圧力, 雰囲</u>	
	<u>の</u> 格納容器圧力及び温度に対応する漏えい率に余裕をとった値とする。	<u>気等の異常な変化, a. 原子炉冷却材喪失」における</u> 格納容器	
	なお、ECCSにより格納容器外へ導かれたサプレッションチェン	圧力及び温度に対応する漏えい率に余裕をとった値とする。	
	バ内のプール水の漏えいによる核分裂生成物の放出量は、格納容器内	なお、ECCSにより格納容器外へ導かれたサプレッション	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	気相部からの漏えいによる放出量に比べて十分小さく,有意な寄与は ないため実効線量の評価を省略する。	チェンバ内のプール水の漏えいによる核分裂生成物の放出量は, 格納容器内気相部からの漏えいによる放出量に比べて十分小さ く,有意な寄与はないため実効線量の評価を省略する。	
	 <u>h.</u>通常運転時に作動している原子炉・タービン建物換気空調系は、原子炉水位低(レベル3)又はドライウェル圧力高の信号により直ちに非常用ガス処理系に切り替えられるものとする。核分裂生成物が原子炉棟において床、壁等に沈着することによる除去効果は無視し、崩壊のみを考える。 <u>i.</u>非常用ガス処理系よう素用チャコールフィルタのよう素の除去効率は、設計上定められた最小値(99.99%)を用いるものとする。 <u>j.</u>非常用ガス処理系の容量は、設計で定められた値(0.5回/d)とする。 <u>k.</u>原子炉棟内の核分裂生成物からの直接線及びスカイシャイン線による実効線量の評価に当たっては、格納容器から原子炉棟内に漏えいした核分裂生成物がすべて原子炉棟内に均一に分布するものとする。 なお、格納容器内の核分裂生成物からの直接線及びスカイシャイン線による実効線量は、原子炉棟内に均一に分布するものとする。 	 (h) 通常運転時に作動している原子炉・タービン建物換気空調系は、原子炉水位低(レベル3)又はドライウェル圧力高の信号により直ちに非常用ガス処理系に切り替えられるものとする。核分裂生成物が原子炉棟において床、壁等に沈着することによる除去効果は無視し、崩壊のみを考える。 (i) 非常用ガス処理系よう素用チャコールフィルタのよう素の除去効率は、設計上定められた最小値(99.99%)を用いるものとする。 (j) 非常用ガス処理系の容量は、設計で定められた値(0.5回/d)とする。 (k) 原子炉棟内の核分裂生成物からの直接線及びスカイシャイン線による実効線量の評価に当たっては、格納容器から原子炉棟内に漏えいした核分裂生成物がすべて原子炉棟内に均一に分布するものとする。 なお、格納容器内の核分裂生成物からの直接線及びスカイシャイシャイン線による実効線量は、原子炉棟内の核分裂生成物がすべて原子炉棟内に均一に分布するものとする。 	
	 1. 事故の評価期間は、格納容器内圧が格納容器からの漏えいが無視できる程度に低下するまでの期間(ここでは安全側に無限期間)とする。 血. 格納容器から原子炉棟内に漏えいした核分裂生成物は非常用ガス処理系で処理された後、非常用ガス処理系の排気管から大気中に放出されるものとする。 n. 放射能閉じ込め機能の観点から、非常用ガス処理系の動的機器に単一故障を仮定する。 (2) 解析結果 上記の解析条件に基づいて計算した核分裂生成物の大気中への放出量は第3.4.4-1表のとおりである。 また、原子炉棟内の核分裂生成物による γ線積算線源強度を第3.4.4-2表に示す。 なお、希ガス及びよう素が大気中に放出されるまでの過程を第3.4.4-1図及び第3.4.4-2図に示す。 3.4.4.3.2 線量の評価 	 キイン線による美効線量は、原子炉一次燃べい壁等により千分 遮へいされており、前述の実効線量に比べて十分小さく、有意 な寄与はないためその評価を省略する。 (1) 事故の評価期間は、格納容器内圧が格納容器からの漏えいが 無視できる程度に低下するまでの期間(ここでは安全側に無限 期間)とする。 (m) 格納容器から原子炉棟内に漏えいした核分裂生成物は非常用 ガス処理系で処理された後、非常用ガス処理系の排気管から大 気中に放出されるものとする。 (n) 放射能閉じ込め機能の観点から、非常用ガス処理系の動的機 器に単一故障を仮定する。 	
	(1) 評価前提 大気中へ放出される核分裂生成物は,非常用ガス処理系の排気管から		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	放出されるものとし、これによる実効線量並びに原子炉棟内の核分裂生		
	成物からの直接線及びスカイシャイン線による実効線量の計算は、次の		
	仮定に基づいて行う。		
	<u>a.</u> 敷地境界外の地表空気中濃度は、 <u>添付書類六の「2.5 安全解析に</u>	(o) 敷地境界外の地表空気中濃度は、 <u>現地における2005年1月か</u>	
	使用する気象条件」に記述する相対濃度に核分裂生成物の全放出量を	ら2005年12月までの気象観測による実測値及び実効放出継続時	
	乗じて求める。	<u>間より求めた</u> 相対濃度に核分裂生成物の全放出量を乗じて求める。	
	b. 敷地境界外の希ガスによる v 線空気カーマは、添付書類六の「2.5	(n) 敷地境界外の希ガスによる v 線空気カーマは、現地における	
	安全解析に使用する気象条件」に記述する相対線量に希ガスの全放出	2005年1月から2005年12月までの気象観測による実測値及び実	
	量を乗じて求める。	<u>効放出継続時間より求めた</u> 相対線量に希ガスの全放出量を乗じ て求める	
	c 直接線及びスカイシャイン線によろ実効線量は 原子炬棟内の核分	(a) 直接線及びスカイシャイン線によろ実効線量は 原子炉棟内	
	裂性生物による v 線積算線源強度を用い、原子炉建物の遮蔽効果を考	の核分裂性生物による、線積篦線源強度を用い、原子炉建物の	
	電して求める。	遮蔽効果を考慮して求める。	
	(2) 評価方法		
	敷地境界外における実効線量は、次に述べる内部被ばくによる実効線		
	量及び外部被ばくによる実効線量の和として計算する。		
	よう素の内部被ばくによる実効線量H ₁ (Sv)は,「3.4.2 主蒸気管破		
	断」の3.4.2.4.2の(2)において主蒸気隔離弁閉止後のよう素の内部被ば		
	くによる実効線量を求める際に用いた(3.4-3)式で計算する。ただし,		
	呼吸率Rは,事故期間が長いことを考慮し,1日平均の呼吸率5.16m ³ /d		
	を秒当たりに換算して用いる。		
	希ガスのγ線外部被ばくによる実効線量H _y (Sv)は,「3.4.1 放射性		
	気体廃棄物処理施設の破損」の3.4.1.3.2の(2)において希ガスのγ線外		
	部被ばくによる実効線量を求める際に用いた(3.4-1)式で計算する。		
	また、直接線及びスカイシャイン線の外部被ばくによる実効線量は、		
	直接線についてはQADコード,スカイシャイン線についてはANIS		
	N, G-33コードにより求めたγ線空気カーマに換算係数(1 Sv/Gy)		
	を乗じて評価する。		
	(3) 評価結果		
	上記の評価方法に基づき敷地境界外の実効線量を評価した結果は、第		
	3.4.4-3表のとおり約1.2×10 ⁻⁴ mSvである。		
	上記の値から判断して、本事故による周辺の公衆に与える放射線被ば		
	くのリスクは十分に小さいものと考えられる。		
	3.4.4.4 判断基準への適合性の検討		
	本事故に対する判断基準は,「1.1.2.3 判断基準」の(5)である。		
	「3.4.4.3.2 線量の評価」で示したように、本事故により周辺の公衆に		
	対し,著しい放射線被ばくのリスクを与えることはなく,「1.1.2.3 判断		
	基準」の(5)は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>3.4.5</u> 制御棒落下	<u>e.</u> 制御棒落下	
	3.4.5.1 原 因		
	本事故の原因は、「3.3.1.1 原因」に記載されたものと同様である。	「(ii) 反応度の異常な投入又は原子炉出力の急激な変化, a.	
		制御棒落下」で想定した制御棒落下の際に、放射性物質が環境に	
		放出される事象を想定する。	
	3.4.5.2 事故防止対策及び事故拡大防止対策		
	本事故の事故防止対策及び事故拡大防止対策は、「3.3.1.2 事故防止対		
	策及び事故拡大防止対策」に記載されたものと同様である。		
	3.4.5.3 核分裂生成物の放出量及び線量の評価 ⁽²¹⁾⁽²²⁾		
	3.4.5.3.1 核分裂生成物の放出量		
	(1) 解析条件		
	「 <u>3.3.1.3 事故経過の解析」に示したように</u> 本事故による燃料棒の	(a) 本事故による燃料棒の燃料被覆管の破損本数が最大となるの	
	燃料被覆管の破損本数が最大となるのは、平衡サイクル末期の高温待機	は、平衡サイクル末期の高温待機臨界状態で事故が発生した場	
	臨界状態で事故が発生した場合であり、炉心の全燃料棒に対する破損燃	合であり、 炉心の全燃料棒に対する破損燃料棒割合は約1.7%で	
	料棒割合は約1.7%であるが保守的に2%として解析する。破損した燃	あるが保守的に2%として解析する。	
	料棒からの核分裂生成物の移行及び放出量の評価は、次の仮定に基づい		
	て行う。		
	<u>a</u> . 原子炉は高温待機臨界状態にあり、事故発生の30分前まで定格出力	(b) 原子炉は高温待機臨界状態にあり、事故発生の30分前まで定	
	の約102% (熱出刀4,005MW) で十分長時間(2,000日) 運転してい	格出刀の約102%(熱出刀4,005MW)で十分長時間(2,000日)連 ましていたたのしたス	
	たものとする。	転していたものとする。 () ませせの主葉伝法見は広地の $\Gamma(0)$ よれ	
	<u>b</u> . 事故時の土然気流重は足俗の 5% とする。 世界した機能はたたたて機能進んなに会たれてない剤生産物の見ば	(C) 事故時の土烝気流重は足格の5%とする。	
	<u>C.</u>	(0)	
	取入山刀の燃料集合体に含まれる里と向してめるとりる。	の重は、取入田刀の燃料集合体に含まれる重と同してめるとす	
	1 破損した燃料構からけ、燃料ギャップ中の核分列生成物の全量が冷		
	<u> </u>	(e) 戦損した燃料律からは、燃料イギンノーの核力表生成初の主	
	3年成物でに成田されるものとする。破損した燃料律のイイワンキの収力 裂生成物の左右量についてけ 最大出力燃料集合休と同等であること	■が11年初日で放田されるものとする。 破損した旅行体のイイ ップロの核分裂生成物の左右量についてけ - 最大出力燃料集合	
	を老うて 破損した燃料権内の会 若 最に対して 希ガス10% よう素	なと同等であることを考えて 破損した燃料棒内の全蓄積量に	
	5%とすろ	対して希ガス10% よう素5%とする	
	e.破損した燃料棒から放出された希ガスは、すべて瞬時に気相部に移	(f) 破損した燃料棒から放出された希ガスは、すべて瞬時に気相	
	行するものとする。	部に移行するものとする。	
	f. 破損した燃料棒から放出されたよう素のうち、有機よう素は4%と	(g) 破損した燃料棒から放出されたよう素のうち、有機よう素は	
	し,残りの 96%は無機よう素とする。有機よう素のうち 10%は瞬時	4%とし,残りの96%は無機よう素とする。有機よう素のうち	
	に気相部に移行するものとし、残りは分解するものとする。有機よう	10%は瞬時に気相部に移行するものとし、残りは分解するもの	
	素が分解したよう素及び無機よう素が気相部にキャリーオーバーされ	とする。有機よう素が分解したよう素及び無機よう素が気相部	
	る割合は2%とする。	にキャリーオーバーされる割合は2%とする。	
	<u>g</u> .主蒸気隔離弁は、主蒸気管放射能高の信号により0.5秒の動作遅れ	(h) 主蒸気隔離弁は,主蒸気管放射能高の信号により0.5秒の動作	
	時間を含み、5.5秒で全閉するものとする。	遅れ時間を含み、5.5秒で全閉するものとする。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>h.</u> 復水器へ移行した核分裂生成物のうち,無機よう素の50%は沈着す	(i) 復水器へ移行した核分裂生成物のうち,無機よう素の50%は	
	るものとし、気相中の残りの核分裂生成物は復水器及び蒸気タービン	沈着するものとし、気相中の残りの核分裂生成物は復水器及び	
	の自由空間に対し0.5%/dの漏えい率でタービン建物内へ漏えいする	蒸気タービンの自由空間に対し0.5%/dの漏えい率でタービン	
	ものとする。	建物内へ漏えいするものとする。	
	<u>i</u> .タービン建物内に漏えいした核分裂生成物については,原子炉・	(j) タービン建物内に漏えいした核分裂生成物については,原子	
	タービン建物換気空調系が作動しているものとし、これにより排気筒	炉・タービン建物換気空調系が作動しているものとし、これに	
	から大気中に放出されるものとする。	より排気筒から大気中に放出されるものとする。	
	<u>j</u> . 放射能閉じ込め機能の観点から,主蒸気隔離弁に単一故障を仮定す	(k) 放射能閉じ込め機能の観点から,主蒸気隔離弁に単一故障を	
	る。	仮定する。	
	(2) 解析結果		
	上記の解析条件に基づいて計算した核分裂生成物の大気中への放出量		
	は第3.4.5-1表のとおりである。		
	なお、希ガス及びよう素が大気中に放出されるまでの過程を第		
	3.4.5-1図及び第3.4.5-2図に示す。		
	3.4.5.3.2 線量の評価		
	(1) 評価前提		
	大気中へ放出される核分裂生成物は,排気筒から放出されるものとし,		
	これによる実効線量の計算は、次の仮定に基づいて行う。		
	<u>a.</u> 敷地境界外の地表空気中濃度は、添付書類六の「2.5 安全解析に	(1) 敷地境界外の地表空気中濃度は、現地における2005年1月か	
	使用する気象条件」に記述する相対濃度に核分裂生成物の全放出量を	ら2005年12月までの気象観測による実測値及び実効放出継続時	
	乗じて求める。	<u>間より求めた</u> 相対濃度に核分裂生成物の全放出量を乗じて求め	
		る。	
	<u>b</u> .敷地境界外の希ガスによるγ線空気カーマは,添付書類六の「2.5 安	(m) 敷地境界外の希ガスによるγ線空気カーマは, <u>現地における</u>	
	全解析に使用する気象条件」に記述する相対線量に希ガスの全放出量を	2005年1月から2005年12月までの気象観測による実測値及び実	
	乗じて求める。	<u>効放出継続時間より求めた</u> 相対線量に希ガスの全放出量を乗じ	
		て求める。	
	(2) 評価方法		
	敷地境界外における実効線量は、次に述べる内部被ばくによる実効線		
	量及び外部被ばくによる実効線量の和として計算する。		
	よう素の内部被ばくによる実効線量H _I (Sv)は,「3.4.2 主蒸気管破		
	断」の3.4.2.4.2の(2)において主蒸気隔離弁閉止後のよう素の内部被ば		
	くによる実効線量を求める際に用いた(3.4-3)式で計算する。		
	また,希ガスのγ線外部被ばくによる実効線量H _y (Sv)は,「3.4.1 放		
	射性気体廃棄物処理施設の破損」の3.4.1.3.2の(2)において希ガスのγ		
	線外部被ばくによる実効線量を求める際に用いた(3.4-1)式で計算す		
	る。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(3) 評価結果		
	上記の評価方法に基づき敷地境界外の実効線量を評価した結果は、第		
	3.4.5-2表のとおり約2.0×10 ⁻² mSvである。		
	上記の値から判断して、本事故による周辺の公衆に与える放射線被ば		
	くのリスクは十分に小さいものと考えられる。		
	3.4.5.4 判断基準への適合性の検討		
	本事故に対する判断基準は、「1.1.2.3 判断基準」の(5)である。		
	「3.4.5.3.2 線量の評価」で示したように、本事故により周辺の公衆に		
	対し,著しい放射線被ばくのリスクを与えることはなく,「1.1.2.3 判断		
	基準」の(5)は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	3.5 原子炉格納容器内圧力,雰囲気等の異常な変化	(w) 原子炉格納容器内圧力,雰囲気等の異常な変化	
	<u>3.5.1</u> 原子炉冷却材喪失	<u>a.</u> 原子炉冷却材喪失	
	3.5.1.1 原 因		
	本事故の原因は、「3.2.1.1 原因」に記載されたものと同様である。	(i) 原子炉冷却材の喪失又は炉心冷却状態の著しい変化,	
		<u>a. 原子炉冷却材喪失」で想定した原子炉冷却材喪失の際に, 格</u> 	
	3.5.1.2 事故防止対策及び事故拡大防止対策 本事故の事故防止対策及び事故拡大防止対策は,「3.2.1.2 事故防止対 策及び事故拡大防止対策」に記載されたものと同様である。	<u>納谷器内の圧力,温度か異常に上升する事家を想定する。</u>	
	3.5.1.3 事故経過の解析		
	LOCA時の格納容器の健全性を確認するため、格納容器の圧力が最高		
	となる給水配管の瞬時両端破断事故の解析を行う。		
	(1) 解析条件		
	解析は、次のような仮定を用いて行う。		
	<u>a.</u> 原子炉は,事故発生直前まで定格出力の約102%(熱出力4,005MW)	(a) 原子炉は,事故発生直前まで定格出力の約102%(熱出力	
	で運転していたものとする。	4,005MW) で運転していたものとする。	
	<u>b.</u> 事故発生と同時に外部電源が喪失するものとする。 。 研修日本にの冷却なの法用は、Machinの防用法エデル (23) な用いて	(b) 事政発生と同時に外部電源か喪失するものとする。 (a) 理能見からの冷却せの済出は Masterの防思済エデルな用いて	
	<u>C.</u> 破断口がらの行动物の流山は、Moodyの臨外流でアルーーを用いて 計質する	(C) 戦倒口がらの行却初の加山は、Moodyの臨外加モノルを用いて 計質する	
	d. 事故発生直前のドライウェル温度、サプレッションチェンバ内の	(d) 事故発生直前のドライウェル温度. サプレッションチェンバ	
	プール水温度及び格納容器内圧力は、それぞれ57℃,35℃及び5	内のプール水温度及び格納容器内圧力は、それぞれ57℃、35℃	
	kPa[gage]とする。	及び5kPa[gage]とする。	
	<u>e.</u> 残留熱除去系の格納容器スプレイ冷却系への手動切替操作は,事故	(e) 残留熱除去系の格納容器スプレイ冷却系への手動切替操作は,	
	検出10分後に開始されるものとし,操作に要する時間を適切に見込み	事故検出10分後に開始されるものとし,操作に要する時間を適	
	事故後15分で操作が完了するものとする。	切に見込み事故後15分で操作が完了するものとする。	
	<u>f.</u> 放射能閉じ込め機能の観点から,格納容器スプレイ冷却系の動的機	(f) 放射能閉じ込め機能の観点から,格納容器スプレイ冷却系の	
	器に単一政障を仮定する。 (2) 報告本法	動的機器に単一政障を仮定する	
	(2) 脾例刀伝 IOCA時の格納容哭内圧力 温度広ダ解析け 全体の解析を次の五		
	つのモデルに分けて考える ⁽²⁶⁾⁽²⁷⁾ 。		
	a. ブローダウンモデル		
	b. ドライウェルモデル		
	c. ベントクリアリングモデル		
	d. ベント流モデル		
	e. サプレッションチェンバモデル		
	以下に各モデルの説明を行う。		
	a. ブローダウンモデル		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	配管破断時に圧力容器からドライウェル内に流出する冷却材の流量		
	(ブローダウン流量)をMoodyの臨界流モデルにより計算する。		
	b. ドライウェルモデル		
	ブローダウンによりドライウェル内に放出される冷却材は、格納容		
	器内の圧力を急速に増加させる。		
	この間のドライウェル内の圧力及び温度の変化を質量保存則、エネ		
	ルギ保存則及び状態方程式から求める。		
	c. ベントクリアリングモデル		
	ドライウェルからサプレッションチェンバに流体が移動するには、		
	サプレッションチェンバ内のプール水に浸っているベント管内の水が		
	ベント管から押し出される必要がある。本モデルは運動方程式を解い		
	て、この時間を計算する。		
	d. ベント流モデル		
	ベント管内の水が押し出され、流体の流出が始まった後は、本モデ		
	ルによりドライウェルからサプレッションチェンバへの流体の流量及		
	びベント管の圧力損失を計算する。		
	e. サプレッションチェンバモデル		
	ベント管の流量をベント流モデルにより求めた後、サプレッション		
	チェンバの圧力及び温度の変化を質量保存則、エネルギ保存則及び状		
	態方程式から求める。		
	(3) 解析結果		
	給水配管が両端破断すると、原子炉及びタービン側から冷却材がドラ		
	イウェル内に急速に流出し、ドライウェル圧力は上昇する。		
	このため、ドライウェル内の気体の大部分は冷却材流出によりサプ		
	レッションチェンバに追い出され、気体中の蒸気はサプレッションチェ		
	ンバ内のプール水により凝縮される。一方,非凝縮性気体はサプレッ		
	ションチェンバ空間部に移行し、サプレッションチェンバの圧力が上昇		
	する。		
	ECCSの作動により、圧力容器の水位が静水頭換算で給水配管の高		
	さまで回復した後は、余剰水は破断口を通してドライウェルへ流出し、		
	ドライウェル内の蒸気を冷却して凝縮させるとともに、炉心での発生熱		
	をサプレッションチェンバに移行させる。ドライウェル内の蒸気凝縮の		
	結果、ドライウェル圧力が減少し、真空破壊装置によってサプレッショ		
	ンチェンバ内の非凝縮性気体は、ドライウェル及びサプレッションチェ		
	ンバに再配分される。残留熱除去系は、初め低圧注水系として作動する		
	が,事故後15分で手動切替により1台のポンプを格納容器スプレイ冷却		
	系として作動させ、格納容器の圧力を低下させる。		
	格納容器スプレイ冷却系の作動開始により、サプレッションチェンバ		
	からの除熱が始まり、炉心からの発熱と冷却系による除熱が等しくなっ		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後) 備	考
	た時点以降は,サプレッションチェンバの温度は低下し始める。		
	除熱によりドライウェルとサプレッションチェンバの温度は低下し,		
	これに従って圧力も降下する。事故後のドライウェル及びサプレッショ		
	ンチェンバの圧力及び温度の時間変化の解析結果を,第3.5.1-1図及び		
	第3.5.1-2図に示す。		
	これらの図から分かるとおり,格納容器内圧力は事故後約 28 秒で最高		
	圧力の約 250kPa[gage]に達するが,格納容器の最高使用圧力である		
	310kPa[gage]より低い。格納容器スプレイ冷却系の作動により,格納容	「	
	器内圧力を大気圧まで低減することができる。また、ドライウェル温度		
	及びサプレッションチェンバ内のプール水温度は,それぞれ約 138℃及		
	び約 97℃に達するが,最高使用温度である 171℃及び 104℃より低い。		
	3.5.1.4 判断基準への適合性の検討		
	本事故に対する判断基準は、格納容器内温度が、最高使用温度を超えな		
	いことを確認した上で,「1.1.2.3 判断基準」の(4)を満足することである。		
	「3.5.1.3(3) 解析結果」で示したように,格納容器内温度(ドライ		
	ウェル温度及びサプレッションチェンバ内のプール水温度)は、最高使用	▶ 比較表 P.123 参照	
	温度を超えず、原子炉格納容器バウンダリにかかる圧力は最高使用圧力以		
	下である。		
	したがって,「1.1.2.3 判断基準」の(4)は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>3.5.2</u> 可燃性ガスの発生	<u>b.</u> 可燃性ガスの発生	
	3.5.2.1 原 因		
	本事故の原因は、「3.2.1.1 原因」に記載されたものと同様である。	「(i) 原子炉冷却材の喪失又は炉心冷却状態の著しい変化,	
		<u>a.</u> 原子炉冷却材喪失」で想定した原子炉冷却材喪失の際に,可	
		<u>燃性ガスが発生する事象を想定する。</u>	
	3.5.2.2 事故防止対策及び事故拡大防止対策		
	本事故の事故防止対策及び事故拡大防止対策は、「3.2.1.2 事故防止対		
	策及び事故拡大防止対策」に記載されたものと同様である。		
	3.5.2.3 事故経過の解析		
	LOCA時の格納容器の健全性を確認するため、格納容器内の可燃性ガ		
	ス濃度変化の解析を行う。		
	(1) 解析条件		
	解析は, 次のような仮定を用いて行う ⁽²⁸⁾⁽²⁹⁾⁽³⁰⁾ 。		
	<u>a.</u> 原子炉は,事故発生直前まで定格出力の約102%(熱出力4,005MW)	(a) 原子炉は,事故発生直前まで定格出力の約102% (熱出力)	
	で運転していたものとする。	4,005MW) で運転していたものとする。	
	<u>b.</u> 事故発生と同時に外部電源が喪失するものとする。	(b) 事故発生と同時に外部電源が喪失するものとする。	
	<u>c.</u> ジルコニウム-水反応による水素の発生量は, <u>「3.2.1.3</u> 事故経過	<u>(c)</u> ジルコニウム-水反応による水素の発生量は, <u>「(i) 原子炉</u>	
	<u>の解析」に示した</u> 水素の発生量の5倍,又は燃料被覆管の表面から	冷却材の喪失又は炉心冷却状態の著しい変化, a. 原子炉冷却	
	5.8µmの厚さが反応した場合に相当する量のいずれか大きい値とし,	<u>材喪失」における</u> 水素の発生量の5倍,又は燃料被覆管の表面	
	解析では燃料被覆管の表面から5.8μmの厚さが反応した場合に相当	から5.8µmの厚さが反応した場合に相当する量のいずれか大き	
	する量とする。なお、これは9×9燃料(A型)では燃料被覆管全量	い値とし,解析では燃料被覆管の表面から5.8µmの厚さが反応	
	の0.88%, 9×9燃料(B型)では燃料被覆管全量の0.89%に相当す	した場合に相当する量とする。なお、これは9×9燃料(A型)	
	る量である。	では燃料被覆管全量の0.88%, 9×9燃料(B型)では燃料被	
		覆管全量の0.89%に相当する量である。	
	<u>d.</u> 不活性ガス糸により事故前の格納容器内の酸素濃度は4.0vol%以下	(d) 不活性ガス糸により事故前の格納容器内の酸素濃度は	
	とするが、解析では上限値の4.0vol%とする。	4.0vo1%以下とするが, 解析では上限値の4.0vo1%とする。	
	<u>e</u> . 事 故 前 に 伶 却 材 甲 に 浴 仔 し て い る 水素, 酸素 の 奇 与 は 非 常 に 少 な い	(e) 事故前に伶却材中に浴存している水素, 酸素の寄与は非常に	
	ので、事政後の格納谷器内の水素、酸素の濃度評価では悪視する。	少ないので、事故後の格納谷器内の水素、酸素の濃度評価では	
		無視する。 (2) またはに除いたのた剤がたじたいので、ない剤生きやいたよい	
	<u>I. $3.2.1.3$ 事政 2 毎 $3.2.1.3$ 事 0 1 1 1 1 1 1 1 1 1 1</u>	(I) 事故時に燃料棒の破袋が生しないので、核分袋生成物は $g^{(I)}$	
	が生しないので、核分裂生成物はすべて燃料棒中にとどまるか、脾析	し燃料倖中にととまるか, 脾研ではハロクノの50%及び固形分	
	ではハログンの50%及び固形分の1%か格納谷菇内の水の攸相中に仔	の1%加格納谷菇内の小の攸相中に仔住するものとする。こう	
	住するものとする。さらに、他の核分表生成物は、布力へを味さ、すべて燃料体内に存在するものとする。	に、他の核力表生成物は、布力人を味さ、りくて燃料棒中に住	
	ハし窓村徑中に行はりるものとりる。 ・ お射線公報により発生する水素ガラ及び酸素ガラの発生割合(の店)	はりるもいとりる。 (*) お計約公留にとれ惑せずて水素ガラ及び酸素ガラの変化型へ	
	<u> ら</u> 、	<u>(8)</u> 版初 旅) 所により 光 生 ② 小 糸	
	は、 $C4 UC 4 UOP IIII 小恐 C (40.47) 丁 / 100 e V , 0.27 丁 / 100 e V , 非御騰 \Lambda能でけの 95 ↔ 국 / 100 e V = 0.195 ↔ 국 / 100 e V + 국 Z$	(GIL) は、 CAUCAU77 鷹小窓 CAU.4万丁/100eV, U.2万丁 /100eV 非連勝比能でけ0.95公子/100eV 0.195公子/100eVレナ	
	$\mathbb{E} \left(\{x, 0, 20\} \} \right) / 100 \in \mathbb{V}, 0.120 \in \mathbb{V} \setminus [0, 100 \in \mathbb{V} \subseteq \mathbb{V} \setminus \mathbb{Q}_0]$	/100000, クロロロ版 10120 (120, 20) 」/100000, 0.120 J 」/10000 と 9 ス	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	<u>h.</u> ドライウェルから可燃性ガス濃度制御系への吸込流量は255m ³ /h	(h) ドライウェルから可燃性ガス濃度制御系への吸込流量は	
	[normal] (1系列当たり) とする。	255m ³ /h[normal] (1系列当たり) とする。	
	可燃性ガス濃度制御系で処理されたガスは、すべてサプレッション	可燃性ガス濃度制御系で処理されたガスは、すべてサプレッ	
	チェンバに戻るものとする。	ションチェンバに戻るものとする。	
	<u>i.</u> 可燃性ガス濃度制御系は,事故後3.5時間で作動し,同時に系統機	(i) 可燃性ガス濃度制御系は,事故後3.5時間で作動し,同時に系	
	能を発揮するものとする。	統機能を発揮するものとする。	
	<u>j.</u> 可燃性ガス濃度制御系の水素ガス及び酸素ガスの再結合効率を95%	(j) 可燃性ガス濃度制御系の水素ガス及び酸素ガスの再結合効率	
	とする。	を95%とする。	
	<u>k.</u> 放射能閉じ込め機能の観点から可燃性ガス濃度制御系に単一故障を	(k) 放射能閉じ込め機能の観点から可燃性ガス濃度制御系に単一	
	仮定する。	故障を仮定する。	
	(2) 解析方法		
	a. ドライウェル, サプレッションチェンバ間でのガスの移動は, 圧力		
	バランスの式により求める。		
	b. 水素及び酸素濃度の時間変化は, 質量バランスの式により求める。		
	(3) 解析結果		
	事故発生後、最初にジルコニウムー水反応によりドライウェル内の水		
	素濃度が上昇する。		
	一方,燃料棒中の核分裂生成物により冷却材の一部が放射線分解し,		
	また、燃料棒から放出されサプレッションチェンバ内のプール水中に保		
	持された核分裂生成物により、サプレッションチェンバ内のプール水の		
	一部が放射線分解し,格納容器内の水素及び酸素濃度が徐々に上昇する。		
	事故後3.5時間で可燃性ガス濃度制御系が作動し,系統機能を発揮する		
	と、ドライウェルから可燃性ガス濃度制御系へ流入したガス中の水素と		
	酸素が再結合され、処理されたガスはすべてサプレッションチェンバに		
	戻される。サプレッションチェンバ内の気体は、圧力が上昇すると真		
	空破壊装置を通してドライウェルへ流入する。		
	ドライウェル内の水素及び酸素濃度は、ドライウェル内での発生量と		
	サプレッションチェンバからの戻り量との合計が可燃性ガス濃度制御系		
	への流出量を下回った時点から低下し始める。同様に,サプレッション		
	チェンバ内の水素及び酸素濃度は、サプレッションチェンバ内での発生		
	量と可燃性ガス濃度制御系からの流入量との合計がドライウェルへの流		
	出量を下回った時点から低下し始める。		
	事故後の水素及び酸素濃度の時間変化を第3.5.2-1図に示す。この図		
	から分かるとおり、格納容器内の可燃性ガス濃度は、最大でも、事故後		
	約3.7時間でドライウェルの水素濃度が約3.5vo1%,約22時間でドライ	▶ 比較表 P.124参照	
	ウェルの酸素濃度が約4.5vo1%に達するが,可燃限界である水素4		
	vo1%及び酸素 5 vo1%より低い。		
	なお、格納容器内の可燃性ガス濃度は、格納容器内に存在する種々の		
	駆動力により十分混合されるため、局所的に高い濃度となることはない。		

頁	平成 21 年 12 月設置許可申請	設置法附則第 23 条第4項に基づく提出書(補正後)	備考
	3.5.2.4 判断基準への適合性の検討		
	本事故に対する判断基準は、事象発生後少なくとも30日間は、格納容器		
	内雰囲気中の酸素又は水素の濃度のいずれかが、それぞれ5vol%又は4		
	vo1%以下であることである。		
	「3.5.2.3(3) 解析結果」で示したように、格納容器内の雰囲気は可燃		
	限界未満に制御される。		
	したがって、判断基準は満足される。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
頁	 平成21年12月設置許可申請 3.5.3 動荷重の発生 格納容器及び格納容器内部の構造物は、LOCA時及び逃がし安全弁作 動時に生じると考えられる動荷重に対し健全性を損なわない構造強度を有する設計とするため、サブレッションチェンバの構造が基本的に MARKI型格納容器と同様の円筒形状であること及び逃がし安全弁の排気管についてもMARKI型格納容器と同様の構造であることから「BW R. MARKI型格納容器圧力抑制系に加わる動荷重の評価指針」を準用し、上記指針に示されている手法に従って荷重の評価を行い⁽³¹⁾,経済産業省告示等に定められている基準を満足するように設計する。 	設置法附則第 23 条第 4 項に基づく提出書(補正後) 上較表 P. 56参照	備考

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類十 再提: P.10-1-11	 1.2 解析に当たって考慮する事項 1.2.1 解析に当たって考慮する範囲 <u>また</u>,解析は,原則として事象が収束し,支障なく冷態停止に至ること ができることが合理的に推定できる時点までとする。 	解析は,原則として事象が収束し,支障なく冷態停止に至ること ができることが合理的に推測できる時点までとする。	
添付書類十 再提 : P. 10-1-11	 1.2 解析に当たって考慮する事項 1.2.1 解析に当たって考慮する範囲 想定された事象の解析を行うに当たっては、異常状態の発生前の状態と して、本原子炉施設の通常運転範囲及び運転期間の全域について考慮し、 サイクル期間中の炉心燃焼度変化、燃料交換等による長期的な変動及び運 転中予想される異なった運転モードを考慮して、判断基準に照らして最も 厳しくなる初期状態を選定する。 	(※)サイクル期間中の炉心燃焼度変化及び燃料取替等により変動する 値であり,設計上の制限値ではない。	代表的数値を用いる解 析条件へ注記を追加

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	 3.6 結 論 本原子炉施設の安全設計の基本方針の妥当性を確認するため、「安全評価審査指針」に従って各種の「事故」を想定し、解析を行った。その結果は、各「事故」の「判断基準への適合性の検討」の項で示したように、想定したすべての「事故」に対してその判断基準が満たされることが確かめられた。 したがって、本原子炉施設は「事故」に対する「安全評価審査指針」の判断基準をすべて満足する。 なお、再循環ポンプ9台運転時に「事故」において想定している事象が発生した場合の解析結果は、10台運転時の解析結果と同等又は判断基準に対して余裕のある結果となっている⁽³²⁾。 	(3) 評価結果 判断基準に対する解析結果は以下のとおりである。	
		(i) 炉心は著しい損傷に至ることはなく、かつ、十分な冷却が可能で あることについては「原子炉冷却材喪失」の場合が最も厳しく、以 下のとおり、「軽水型動力炉の非常用炉心冷却系の性能評価指針」に 示された基準を満足する。	
添付書類十 再提 : P.10-3-9	 3.2.1 原子炉冷却材喪失 3.2.1.3 事故経過の解析 3.2.1.3.1 9×9燃料(A型)を装荷した炉心について (3) 解析結果 a.炉心流量,原子炉圧力,原子炉水位及び燃料被覆管温度の変化 この図から分かるとおり,本事故時の燃料被覆管最高温度は,約 	<u>a. 燃料被覆管温度の最高値は約600℃であり, 燃料被覆管温度</u> <u>1,200℃以下を満足する。</u>	有効数字二桁で切り上 げ処理
添付書類十 再提: P.10-3-16	 3.2.1 原子炉冷却材喪失 3.2.1.4 判断基準への適合性の検討 <u>「3.2.1.3 事故経過の解析」で示したように、燃料被覆管の温度の</u> 最高値は1,200℃以下であり、破裂の発生する燃料棒はなく、燃料被覆管の 酸化層厚みの増加量は酸化反応が著しくなる前の燃料被覆管厚さの 15%以下である。 <u>また、</u>全燃料被覆管のジルコニウムー水反応割合は無視し得る程度であ るため、反応に伴い発生する水素の量は格納容器の健全性確保の見地から 十分低い。 	 <u>b.</u>燃料被覆管の酸化量は酸化反応が著しくなる前の燃料被覆管厚 さの15%以下である。 <u>c.</u>全燃料被覆管のジルコニウム-水反応割合は無視し得る程度で あるため,反応に伴い発生する水素の量は格納容器の健全性確保 の見地から十分低い。 	
	長期間にわたっての崩壊熱の除去は,原子炉隔離時冷却系を除くECC Sのうちいずれか1台のポンプが作動すれば確保される。	<u>d.</u> 長期間にわたっての崩壊熱の除去は,原子炉隔離時冷却系を除 くECCSのうちいずれか1台のポンプが作動すれば確保される。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
「添付書類十 再提: P.10-3-45	 3.3.1 制御棒落下 3.3.1.4 判断基準への適合性の検討 「3.3.1.3 事故経過の解析」で示したように、燃料エンタルピの最大値 	(ii) 燃料エンタルピについては、「制御棒落下」の場合が最も大きく、	
	は <u>約 746kJ/kgUO2</u> であり,制限値 963kJ/kgUO2(230cal/gUO2)から燃 焼の進行等に伴うペレット融点低下の影響を考慮した値 837kJ/kgUO2 を 超えていない。	然料エンタルピの最大値は約750kJ/kg・U02であり、「反応度投入事象 評価指針」に示される燃料の許容設計限界963kJ/kg・U02から、燃焼に 伴う融点低下分に相当す るエンタルピ及びガドリニア添加に伴う 融点低下分に相当するエンタルピを差し引いた837kJ/kg・U02以下で あることを満足する。	有効数字二桁で切り上 げ処理
[添付書類十	3.3.1 制御棒落下		
再提: P.10-3-45	 3.3.1.4 判断基準への適合性の検討 さらに、浸水燃料の影響によって、原子炉停止能力及び圧力容器の健全 性が損なわれることはない。 なお、PCMI破損に伴う機械的エネルギの影響については、「反応度投 入事象取扱報告書」添付4の影響評価に包含される。 	さらに,浸水燃料の影響によって,原子炉停止能力及び圧力容器 の健全性が損なわれることはない。 なお, PCMI破損に伴う機械的エネルギの影響については,「反 応度投入事象取扱報告書」添付4の影響評価に包含される。	
添付書類十 再提: P.10-3-36	 3.3.1 制御棒落下 3.3.1.3.1 9×9燃料(A型)を装荷した炉心について (3)解析結果 b.燃料エンタルピの最大値は、いずれの場合も「反応度投入事象 評価指針」に示される963kJ/kgUO₂(230cal/gUO₂)から燃焼に伴う ペレット融点低下分に相当するエンタルピ約105kJ/kgUO₂及びガド リニア添加に伴うペレット融点低下分に相当するエンタルピ約105kJ/kgUO₂及びガド 21kJ/kgUO₂を差し引いた837kJ/kgUO₂を下回っている。また、原子 炉冷却材圧力バウンダリにかかる圧力は、保守的に見積もっても、<u>約</u> 8.54MPa[gage]である。 	 (iii) 原子炉冷却材圧力バウンダリにかかる圧力については、「制御棒落 下」の場合が最も高く、保守的に見積もっても、約8.6MPa[gage]で あり、最高使用圧力の1.2倍の圧力10.34MPa[gage]以下であることを 満足する 	有効数字二桁で切り上 げ処理
添付書類十 再提 : P. 10−3−88	 3.5.1 原子炉冷却材喪失 3.5.1.3 事故経過の解析 (3) 解析結果 これらの図から分かるとおり,格納容器内圧力は事故後約 28 秒で最高 圧力の約 250kPa[gage]に達するが,格納容器の最高使用圧力である 310kPa[gage]より低い。 	 <u>両足する。</u> (iv) 原子炉格納容器バウンダリにかかる圧力については,「原子炉冷 <u>却材喪失」において,約250kPa[gage]に達するが,</u>最高使用圧力 <u>310kPa[gage]以下であることを満足する。</u> 	有効数字二桁で切り上 げ処理
添付書類十 再提: P.10-3-89	 3.5.1.4 判断基準への適合性の検討 <u>「3.5.1.3(3)</u> 解析結果」で示したように,格納容器内温度<u>(ド</u> ライウェル温度及びサプレッションチェンバ内のプール水温度)は,最高 使用温度を超え<u>ず,原子炉格納容器バウンダリにかかる圧力は最高使用圧</u> 力以下である。 	<u>また,</u> 格納容器内温度は,最高使用温度を超え <u>ない。</u>	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
添付書類十 再提: P.10-3-93	 3.5.2 可燃性ガスの発生 3.5.2.3 事故経過の解析 (3) 解析結果 事故後の水素及び酸素濃度の時間変化を第3.5.2-1図に示す。この図から分かるとおり、格納容器内の可燃性ガス濃度は、最大でも、事故後約3.7 時間でドライウェルの水素濃度が約3.5vo1%、約22時間でドライウェルの酸素濃度が約4.5vo1%に達するが、可燃限界である水素4vo1%及び酸素5vo1%より低い。 	さらに,格納容器内の可燃性ガス濃度は,ドライウェルの水素濃 度が約3.5vo1%,ドライウェルの酸素濃度が約4.5vo1%に達するが, 可燃限界である水素4vo1%及び酸素5vo1%より低く,格納容器内 の雰囲気は可燃限界未満に制御される。	
添付書類十 再提: P.10-3-72	 3.4.3 燃料集合体の落下 3.4.3 2線量の評価 (3) 評価結果 上記の評価方法に基づき敷地境界外の実効線量を評価した結果は、第 3.4.3-2表のとおり約1.6×10⁻¹mSvである。 上記の値から判断して、本事故による周辺の公衆に与える放射線被ぼくのリスクは十分に小さいものと考えられる。 	(v) 敷地境界外の実効線量については、「燃料集合体の落下」の場合が 最も大きく、約1.6×10 ⁻¹ mSvであり、周辺の公衆に対し、著しい放 射線被ばくのリスクを与えることはない。	

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	3.7 その他(地震,火災,台風,洪水等)		
	地震、台風、洪水等の自然現象に対しては、敷地周辺の過去の記録に基		
	づいて敷地で考えられる最も過酷な場合を想定する等,十分な安全設計を		
	講じ,また,火災に対しては原子炉施設に見合った火災防護対策を講じる。		
	したがって、これらの自然現象や火災等が、原子炉施設の安全評価で想		
	定する事故の誘因になること、また、事故を拡大することは考えられない。		
	(1) 地 震		
	耐震設計に当たっては、建物・構築物は、十分な支持性能をもつ		
	地盤に設置する設計とする。また、施設は、地震により発生する可		
	能性のある環境への放射線による影響の観点からなされる耐震設		
	計上の区分ごとに, 適切と考えられる設計用地震力に十分耐えられ		
	るように設計する。Sクラスの施設は、基準地震動Ssによる地震		
	力に対して安全機能が保持できる設計とし、さらに弾性設計用地震		
	動Sdによる地震力又は静的地震力のいずれか大きい方の地震力に		
	対して耐える設計とする。また、異なる耐震設計上の区分に属する		
	設備相互の間では、上位の分類に属するものは、下位の分類に属す		
	るものの破損によって波及的破損が生じない設計とする。		
	上記の耐震設計とは別に,原子炉緊急停止系作動回路の一つとして,		
	原子炉施設が一定の加速度以上の地震動に見舞われた場合に「地震加速		
	度大」の信号により、原子炉をスクラムさせる回路を設ける。		
	(2) 地震以外の想定される自然現象		
	原子炉格納施設等の重要施設の風荷重に対する設計については、建築		
	基準法に定める設計基準に従う。		
	積雪,凍結については,敷地周辺の過去の記録に基づいて敷地で考え		
	られる最も過酷な場合を想定した設計を行う。		
	津波, 高潮については, 敷地造成に際して十分な敷地高さを確保する		
	等の対策を講じる。また、水位が低下した場合でも、原子炉補機冷却系		
	へ取水できる設計を行う。		
	洪水については,敷地の地形及び表流水の状況から判断して,原子炉		
	施設等がその影響を受けることはない。		
	地すべりについては、敷地北東部の山麓斜面の一部に地すべり堆積物		
	が分布するが、原子炉施設との位置関係等から、原子炉施設の安全性に		
	影響を及ぼすことはない。		
	雷については、発電所の雷害防止として排気筒、各建物等に避雷針、		
	棟上導体を取り付けること、接地網の布設による接地抵抗の低減などの		
	対策を行う。		
	火山については, 敷地周辺の第四紀に活動した火山の活動時期, 噴出物		
	の種類と分布及び敷地との位置関係並びに敷地及び敷地を中心とする半		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	径30kmの範囲に分布する主な降下火山灰の影響について検討した結果,火		
	山に係る現象が原子炉施設の安全性に影響を及ぼすことはない。		
	(3) 火 災		
	発電所全体を通じ、使用される材料は可能な限り不燃性、難燃性とす		
	る等, 火災の発生を防止するための予防措置が講じられていることから,		
	火災の可能性は少ないが、万一の場合を考え、火災報知設備、消火栓設		
	備,二酸化炭素消火設備,泡消火設備及び消火器を消防法等に基づいて,		
	適切に設置し、発電所火災の早期発見、消火活動の円滑化を図り、火災		
	による人的、物的被害を軽減し、発電所の安全性が損なわれないように		
	する。		
	さらに、中央制御室から退去しなければならないような火災が起こる		
	可能性が極力少なくするように、中央制御室内の制御盤及び計器類は実		
	用上可能な限り不燃性,難燃性の材料を用いる。		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	3.8 参考文献		
	(1) 「沸騰水型原子力発電所 燃料の設計手法について」		
	(株式会社日立製作所,HLR-033訂1,平成10年2月)		
	(2) Scatena, G. J. and Upham, G. L., "Power Generation in a BWR		
	Following Normal Shutdown or Loss-of-Coolant Accident Conditions",		
	NEDO-10625, April 1973.		
	(3) Moody, F. J., "Maximum Discharge Rate of Liquid-Vapor Mixtures		
	from Vessels", NEDO-21052, September 1975.		
	(4) 「沸騰水型原子力発電所 非常用炉心冷却系(ECCS)の新性能評		
	価手法について」		
	(株式会社日立製作所,HLR-032訂3, 平成10年5月)		
	(5) "General Electric Company Analytical Model for Loss-of-Coolant		
	Analysis in accordance with 10CFR50 Appendix K", NEDO-20566,		
	January 1976.		
	(6) 「沸騰水型原子力発電所 非常用炉心冷却系(ECCS)性能解析モ		
	デルについて」		
	(株式会社日立製作所, HLR-018訂3, 平成10年5月)		
	(7) 「沸騰水型軽水炉用燃料の設計手法について」		
	(原子燃料工業株式会社, NLR-14, 昭和62年12月)		
	(8) 「BWRの非常用炉心冷却系解析手法について」		
	(原子燃料工業株式会社,NLR-010改訂1,平成10年5月)		
	(9) Linford, R. B., "Analytical Methods of Plant Transient Evaluations		
	for the General Electric Boiling Water Reactor", NEDO-10802,		
	February 1973.		
	(10) 「沸騰水型原子力発電所 ブラント動特性解析手法について」		
	(株式会社日立製作所, HLR -014 訂2, 昭和63年3月)		
	(11) 「 BWR)フント動特性解析手法について」 (原ス機能工業株式会社、 NLD , 07 , 正式 075 日)		
	(原于燃料工業株式会社,NLR -07 ,平成2年 3 月)		
	(12) 「佛騰小空原于刀笼龟別」 $反応度投入事家胜州于法について」(拱于会社日立制作託 III D 019訂2 亚式11年9日)$		
	(株式云社日立衆作別、日LK -012 訂3、平成 11 平 2 月) (12) 「PWPの反応産扱入車角報振手法について」		
	(13) 「 $BWKO汉応侵投八爭家胜机于法について」(百乙憐約丁芝姓式合社 NLLP -00 亚式6年4月)$		
	(原丁為科工業林式去社,NLK -09 , 十成0年4月)		
	Film Boiling Heat Transfer under Reactivity-Initiated Accident		
	Conditions in Light Water Reactors" Proceedings 2nd International		
	Tonical Meeting on Nuclear Thermalhydraulics January 1983 Santa		
	Barbara. U. S. A.		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(15) 日本機械学会 熱・熱力学部門委員会, 伝熱工学資料調査分科会編,		
	「伝熱工学資料」,改訂第2版,日本機械学会(1966)		
	(16) 「沸騰水型原子力発電所 燃焼の進んだ燃料に対する反応度投入事象		
	の影響評価」		
	(株式会社日立製作所, HLR-055訂2, 平成11年2月)		
	(17) Paone, C. J. et al., "Rod Drop Accident Analysis for Large Boiling		
	Water Reactors", NEDO-10527, March 1972.		
	(18) Stirn, R. C. et al., "Rod Drop Accident Analysis for Large Boiling		
	Water Reactors, Addendum No.1 Multiple Enrichment Cores with Axial		
	Gadolinium", NEDO-10527, Supplement 1, July 1972.		
	(19) Stirn, R. C. et al., "Rod Drop Accident Analysis for Large Boiling		
	Water Reactors, Addendum No.2 Exposed Cores", NEDO-10527,		
	Supplement 2, January 1973.		
	(20) 「BWRの燃焼の進んだ燃料に対する反応度投入事象の影響評価につ		
	いて」		
	(原子燃料工業株式会社, NLR-19改訂1, 平成10年3月)		
	(21) 「沸騰水型原子力発電所 事故時の被ばく評価手法について」		
	(株式会社日立製作所, HLR-021訂8, 平成11年8月)		
	(22) 「BWRの事故時の被ばく解析手法について」		
	(原子燃料工業株式会社, NLR-18, 平成9年1月)		
	(23) Moody, F. J., "Maximum Flow Rate of a Single Component, Two-		
	Phase Mixture", J. of Heat Transfer, Trans. ASME, Series C, Vol. 87,		
	No. 1, February 1965, pp. 134-142.		
	(24) Hench, J. E., "Consequences of a Steam Line Break in a General		
	Electric Boiling Water Reactor", NEDO-10045, July 1969.		
	(25) 「彼はく計算に用いる放射線エネルギー等について」		
	(平成13年3月 原子刀安全基準專門部会)		
	(26) Bilanin, W. J., The General Electric Mark III Pressure Suppression		
	Containment System Analytical Model , NEDU-20533, June 1974.		
	(27) 「佛騰水空原子刀発竜所」原子炉格納谷 品 週 彼 変 化 の 脾 析 モ テ ル に う		
	いし」 (歴式会社日立制佐託 III D 016町1 四和69年9月)		
	(株式云社口立要作別, HLK-010前1, 昭和63年5月)		
	(28) Wilson, R. M. and Siller, B. C., Hydrogen Generation and the		
	1073		
	(90) 「油腾水刑百子力発電所 可燃烘ガマ濃度判御玄にへいて」		
	(43) 「你應小至你丁刀光电灯」 可然性及不振及前仰ボについて」 (株式会社日立制作所 UID—010訂2 叨和62年4日)		
	$(1 \land \Lambda \land \Box \land \Box$		
	(00) $DWKOUKHAA最及胜何于伍尼OV(C)(百乙憐點工業株式合社 NILD_17 亚式OF19月)$		

頁	平成 21 年 12 月設置許可申請	設置法附則第23条第4項に基づく提出書(補正後)	備考
	(31) 「水平ベント方式の圧力抑制型格納容器における水力学的動荷重評価		
	の方法について」		
	(株式会社日立製作所, HLR-040, 昭和63年2月)		
	(32) 「沸騰水型原子力発電所 原子炉内蔵型の原子炉冷却材再循環ポンプ		
	の運転台数とプラント挙動評価		
	(株式会社日立製作所,HLR-062訂1,平成12年9月)		

上関原子力発電所1号炉 原子力規制委員会設置法 附則第23条第4項に基づく提出書

原子炉設置変更許可申請書 申請書添付参考図記載事項 比較表

平成26年3月 中国電力株式会社

別紙3

頁	申請書添付参考図(平成 25 年 12 月 25 日提出)	申請書添付参考図(補正後)	備考			
	申請書添付参考図表	申請書添付参考図				
	平成21年12月18日付け電原建安第53号をもって設置許可を申請した上関原子	平成21年12月18日付け電原建安第53号をもって設置許可を申請した上関原子				
	力発電所の原子炉設置許可申請書の申請書添付参考図に添付1を追加する。	力発電所の原子炉設置許可申請書の申請書添付参考図に添付1を追加する。 				
頁	申請書添付参考図(平成25年12	月 25 日提出)		備考		
---	--	--	--------------------------------	-------------------------------	--	--------
	申請書添付参考図表	目録				
	第1図 敷地付近地図	(添付書類六第6.2-2図)	第1図	敷地付近地図	(添付書類六第6.2-2図)	
	•		•			
			•			
	第24 図 固体廃棄物処埋糸糸統概要図	(添付書類八第 10.3-1 図)	第24 凶	固体廃棄物処埋糸糸統概要凶	(添付書類八第10.3-1 図)	
	<u>第25図 管理区域及び周辺監視区域図</u>	<u>(添付書類九第2.1-1 図)</u>	体。「」	マック (11) マント・マーク (11) マント・マント		いて回来光と
	弗 20 図 通常連転時における気体廃業物の主な放		_	週吊連転時にわける気体廃業物の3 1		以下図番りれ
	<u> </u>	(你们者類儿弟 4.2-1 区) 明図	<u> </u>	遊休感奉施加田ズのお針州施所連度	(你们 書類 儿弗 4.2-1 凶) 在 第 前 田 図	
	第 <u>27</u> 因	· 切凶 (沃什聿新九笠43-1図)	-	似冲庑来初处 连示切放射性初复债员	2 守武 57 凶 (沃什聿 約 1 3 — 1 図)	
	第 98 図 <u></u>	(派门 查 規 儿 历 4.3 - 1 因) (沃什聿 新 十 笠 9 9 - 9 团)	笛 97 図	主苏气隔離允問止焅枕	(派门 音規 几 册 4.3 - 1 因) (派付書紙 十 笛 9 9 - 9 团)	
	第 <u>20</u> 回 江窓 风隔離开 固正 竹 庄 筆 20 回 減速 材 ボイ ド 係 数	$(派代書類 \pi 2.2 - 2 \text{ G})(沃付聿粨八笛 3 4 1 - 5 図)$	安 <u>21</u> 四 第 <u>28</u> 図	工業入時離开的工作に 減速材ボイド係数	$(派行 畫 新 \pi 2 \cdot 2 - 2 \Box)(沃付 書 新 1 笛 3 4 1 — 5 図)$	
	<u>第 20</u> () () () () () () () () () ((添付書類八第 3.4.1-3.図)	第 <u>20</u> 凶 第 <u>20</u> 図	ドップラ係数	(添付書類八番3.4.1-3.図)	
	第 31 図 引抜制御榛反広度曲線	(添付書類十第23-1図)	第 <u>30</u> 図	引抜制御榛反応度曲線	(添付書類/(新6.1.1))	
	第32図 スクラム反応度曲線	(添付書類十第2.3-2図)	第 <u>31</u> 図	スクラム反応度曲線	(添付書類十第2.3-2図)	
	第33図 落下制御棒反応度曲線	(添付書類十第3.3.1-1図)	第 <u>32</u> 図	落下制御棒反応度曲線	(添付書類十第3.3.1-1図)	
	第 34 図 スクラム反応度曲線	(添付書類十第3.3.1-2図)	第 <u>33</u> 図	スクラム反応度曲線	(添付書類十第3.3.1-2図)	
	第1表 放射性希ガス放出量及び実効エネルギ	(添付書類九第4.2-4表)				
	第3表 液体廃棄物の推定発生量と推定環境放出量					
		(添付書類九第 4.3-1 表)				

備考

	申請書添付参考	考図(平成 25 年 1	2月25日提出)		申請書添付参考図(補正後)	備考
	<u> 第1表</u> 放射	・性希ガス放出量及	<u>び実</u> 効エネルギ	2		
١ſ	放出経路	y 線実効エネルギ (MeV)	希ガス放出率 (Bq/s)	希ガス放出量 (Bq/y)		
	蒸 気 式 空 気 抽 出 器 及 び 起動停止用蒸気式空気抽出器	約 5.5×10 ⁻²	約7.7×10 ⁶	約 1.9×10 ¹⁴	(削除)	
	復水器真空ポンプ	約 2.5×10 ⁻¹	_	約 4.6×10 ¹³		
力	タービン建物	約 8.2×10 ⁻¹	約 3.7×10 ⁶	約 9.3×10 ¹³		
	気 原 子 炉 建 物	約 2. 2×10 ⁻¹	約 1.3×10 ⁶	約 3.3×10 ¹³		
	廃棄物処理建物	約 2.2×10 ⁻¹	約 1.3×10 ⁶	約 3.3×10 ¹³		
	合 計	約 2.9×10-1 ※	_	約4.0×10 ¹⁴		
*	* 連続放出の平均エネルキ					

頁	申請書添付参考図(平成 25 年 12 月 25 日提出)					申請書添付参考図(補正後)	備考
		<u>第2表</u> 放射	生よう素の放出				
		131	Ι	¹³³ I			
	放出経路	放出率 (Bq/s)	放出量 (Bq/y)	放出率 (Bq/s)	放出量 (Bq/y)	(削除)	
	復水器真空ポンプ	_	約 1.5×10 ⁹	_	約 1.5×10 ⁹		
	運転時	約 3.5×10 ²	約 8.9×10 ⁹	約 9.7×10 ²	約 2.5×10 ¹⁰		
	定検時	_	約 7.4×10 ⁹	_	_		
	合 計	_	約1.8×10 ¹⁰	_	約 2.6×10 ¹⁰		

頁	申請書添付参	考図(平成 25 年 12 月	月 25 日提出)	申請書添付参考図(補正後)	備考
	<u>第3表</u> 液体廃	棄物の推定発生量と	推定環境放出量		
		推定発生量	推定環境放出量		
	機器ドレン・床ドレン廃液 (低 電 導 度 廃 液 系)	約 65m³/d	0		
	化 学 廃 液 (高電導度廃液系)	約 5 m³/d	約 3,000m³/y ** (約 1 ×10 ⁹ Bq/y)		
	洗 濯 廃 液 (洗 濯 廃 液 系)	約 15m³/d	約 5, 400m³/y (約 1 ×10 ⁸ Bq/y)		
	※ 高電導度廃液系の処理済液は、 ビングランドシール並びに起動性 などの回収により、復水貯蔵タン 液系で処理し、放射性物質の濃度 としては、年間3,000m ³ 程度と推	<u>通常再使用する。しかし</u> <u>少の保有水量が増加する</u> <u>たか低い処理済液を環境に</u> <u>定される。</u>	2,原子炉起動時及び停止時にター 生使用した補助ボイラ蒸気の凝縮水 らような場合,余剰水を高電導度廃 生放出することがある。環境放出量		

上関原子力発電所1号炉 原子力規制委員会設置法 附則第23条第4項に基づく提出書

原子炉設置変更許可申請書 添付書類記載事項 比較表

平成26年3月 中国電力株式会社

別紙4

頁	添付書類(平成 25 年 12 月 25 日提出)			添付書類(補正後)		
	添 付 書 類 今回の提出に係る添付書類は以下のとおりである。					
			今回の提出			
	添付書類九	発電用原子炉施設の放射線の管理に関する説明書	添付書類九	発電用原子炉施設の放射線の管理に関する説明書		
		平成21年12月18日付け電原建安第53号にて設置許可を申請した上		平成21年12月18日付け電原建安第53号にて設置許可を申請した上		
		関原子力発電所の原子炉設置許可申請書における添付書類九「変更後		関原子力発電所の原子炉設置許可申請書における添付書類九「変更後		
		における核燃料物質及び核燃料物質によって汚染された物による放		における核燃料物質及び核燃料物質によって汚染された物による放		
		射線の被ばく管理並びに放射性廃棄物の廃棄に関する説明書」の記載		射線の被ばく管理並びに放射性廃棄物の廃棄に関する説明書」の記載		
		内容に同じ。				
				<u>たたし、「2. 発電所の放射線管理」のうち「2.2 管理区域内の管</u>	本文九号に合	
				<u>埋 (4)」の記載を下記のとおり変更する。</u>	わせ変更。	
				言曰	(夫用炉則との記載の敷合)	
					の記載の空口)	
				(4) 管理区域から人が退去し、又は物品を持ち出そうとする場合に		
				は、その者の身体及び衣服、履物等身体に着用している物並びにそ		
				の持ち出そうとする物品(その物品を容器に入れ又は包装した場合		
				には,その容器又は包装)の表面の放射性物質の密度が(3)の表面		
				密度限度の十分の一を超えないようにする。		
	添付書類十	発電用原子炉施設において事故が発生した場合における当該事故に	添付書類十	発電用原子炉施設において事故が発生した場合における当該事故に		
		対処するために必要な施設及び体制の整備に関する説明書		対処するために必要な施設及び体制の整備に関する説明書		
		平成21年12月18日付け電原建安第53号にて設置許可を申請した上		平成21年12月18日付け電原建安第53号にて設置許可を申請した上		
		関原子力発電所の原子炉設置許可申請書における添付書類十「変更後		関原子力発電所の原子炉設置許可申請書における添付書類十「変更後		
		における原子炉の操作上の過失,機械又は装置の故障,地震,火災等		における原子炉の操作上の過失,機械又は装置の故障,地震,火災等		
		があった場合に発生すると想定される原子炉の事故の種類,程度,影		があった場合に発生すると想定される原子炉の事故の種類,程度,影		
		響等に関する説明書」の記載内容に同じ。		響等に関する説明書」の記載内容に同じ。		
		ただし,下記の読み替えを行う。		ただし,下記の読み替えを行う。		
		記		記		
		「発電用軽水型原子炉施設の安全評価に関する審査指針」に従い記		「発電用軽水型原子炉施設の安全評価に関する審査指針」に従い記		
		載している「事故」を「設計基準事故」と読み替える。		載している「事故」を「設計基準事故」と読み替える。		